Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-iom | GIF version |
Description: Define the class of
natural numbers as the smallest inductive set, which
is valid provided we assume the Axiom of Infinity. Definition 6.3 of
[Eisenberg] p. 82.
Note: the natural numbers ω are a subset of the ordinal numbers df-on 4105. Later, when we define complex numbers, we will be able to also define a subset of the complex numbers with analogous properties and operations, but they will be different sets. (Contributed by NM, 6-Aug-1994.) Use its alias dfom3 4315 instead for naming consistency with set.mm. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-iom | ⊢ ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | com 4313 | . 2 class ω | |
2 | c0 3224 | . . . . . 6 class ∅ | |
3 | vx | . . . . . . 7 setvar 𝑥 | |
4 | 3 | cv 1242 | . . . . . 6 class 𝑥 |
5 | 2, 4 | wcel 1393 | . . . . 5 wff ∅ ∈ 𝑥 |
6 | vy | . . . . . . . . 9 setvar 𝑦 | |
7 | 6 | cv 1242 | . . . . . . . 8 class 𝑦 |
8 | 7 | csuc 4102 | . . . . . . 7 class suc 𝑦 |
9 | 8, 4 | wcel 1393 | . . . . . 6 wff suc 𝑦 ∈ 𝑥 |
10 | 9, 6, 4 | wral 2306 | . . . . 5 wff ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥 |
11 | 5, 10 | wa 97 | . . . 4 wff (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥) |
12 | 11, 3 | cab 2026 | . . 3 class {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
13 | 12 | cint 3615 | . 2 class ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
14 | 1, 13 | wceq 1243 | 1 wff ω = ∩ {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 suc 𝑦 ∈ 𝑥)} |
Colors of variables: wff set class |
This definition is referenced by: dfom3 4315 |
Copyright terms: Public domain | W3C validator |