ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfom3 Structured version   GIF version

Theorem dfom3 4258
Description: Alias for df-iom 4257. Use it instead of df-iom 4257 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 𝜔 = {x ∣ (∅ x y x suc y x)}
Distinct variable group:   x,y

Proof of Theorem dfom3
StepHypRef Expression
1 df-iom 4257 1 𝜔 = {x ∣ (∅ x y x suc y x)}
Colors of variables: wff set class
Syntax hints:   wa 97   = wceq 1242   wcel 1390  {cab 2023  wral 2300  c0 3218   cint 3606  suc csuc 4068  𝜔com 4256
This theorem depends on definitions:  df-iom 4257
This theorem is referenced by:  omex  4259  peano1  4260  peano2  4261  peano5  4264  bj-dfom  9367  peano5set  9374
  Copyright terms: Public domain W3C validator