ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfom3 Structured version   GIF version

Theorem dfom3 4242
Description: Alias for df-iom 4241. Use it instead of df-iom 4241 for naming consistency with set.mm. (Contributed by NM, 6-Aug-1994.)
Assertion
Ref Expression
dfom3 𝜔 = {x ∣ (∅ x y x suc y x)}
Distinct variable group:   x,y

Proof of Theorem dfom3
StepHypRef Expression
1 df-iom 4241 1 𝜔 = {x ∣ (∅ x y x suc y x)}
Colors of variables: wff set class
Syntax hints:   wa 97   = wceq 1228   wcel 1374  {cab 2008  wral 2284  c0 3201   cint 3589  suc csuc 4051  𝜔com 4240
This theorem depends on definitions:  df-iom 4241
This theorem is referenced by:  omex  4243  peano1  4244  peano2  4245  peano5  4248  bj-dfom  7302  peano5set  7309
  Copyright terms: Public domain W3C validator