Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-dfom GIF version

Theorem bj-dfom 10057
Description: Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.)
Assertion
Ref Expression
bj-dfom ω = {𝑥 ∣ Ind 𝑥}

Proof of Theorem bj-dfom
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfom3 4315 . 2 ω = {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)}
2 df-bj-ind 10051 . . . . 5 (Ind 𝑥 ↔ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥))
32bicomi 123 . . . 4 ((∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥) ↔ Ind 𝑥)
43abbii 2153 . . 3 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} = {𝑥 ∣ Ind 𝑥}
54inteqi 3619 . 2 {𝑥 ∣ (∅ ∈ 𝑥 ∧ ∀𝑦𝑥 suc 𝑦𝑥)} = {𝑥 ∣ Ind 𝑥}
61, 5eqtri 2060 1 ω = {𝑥 ∣ Ind 𝑥}
Colors of variables: wff set class
Syntax hints:  wa 97   = wceq 1243  wcel 1393  {cab 2026  wral 2306  c0 3224   cint 3615  suc csuc 4102  ωcom 4313  Ind wind 10050
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-int 3616  df-iom 4314  df-bj-ind 10051
This theorem is referenced by:  bj-omind  10058  bj-omssind  10059  bj-ssom  10060  peano5setOLD  10065
  Copyright terms: Public domain W3C validator