Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-fo | GIF version |
Description: Define an onto function. Definition 6.15(4) of [TakeutiZaring] p. 27. We use their notation ("onto" under the arrow). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
df-fo | ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | cF | . . 3 class 𝐹 | |
4 | 1, 2, 3 | wfo 4900 | . 2 wff 𝐹:𝐴–onto→𝐵 |
5 | 3, 1 | wfn 4897 | . . 3 wff 𝐹 Fn 𝐴 |
6 | 3 | crn 4346 | . . . 4 class ran 𝐹 |
7 | 6, 2 | wceq 1243 | . . 3 wff ran 𝐹 = 𝐵 |
8 | 5, 7 | wa 97 | . 2 wff (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 4, 8 | wb 98 | 1 wff (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) |
Colors of variables: wff set class |
This definition is referenced by: foeq1 5102 foeq2 5103 foeq3 5104 nffo 5105 fof 5106 forn 5109 dffo2 5110 dffn4 5112 fores 5115 dff1o2 5131 dff1o3 5132 foimacnv 5144 foun 5145 fconstfvm 5379 dff1o6 5416 fo1st 5784 fo2nd 5785 tposfo2 5882 |
Copyright terms: Public domain | W3C validator |