ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foun GIF version

Theorem foun 5145
Description: The union of two onto functions with disjoint domains is an onto function. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
foun (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))

Proof of Theorem foun
StepHypRef Expression
1 fofn 5108 . . . 4 (𝐹:𝐴onto𝐵𝐹 Fn 𝐴)
2 fofn 5108 . . . 4 (𝐺:𝐶onto𝐷𝐺 Fn 𝐶)
31, 2anim12i 321 . . 3 ((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) → (𝐹 Fn 𝐴𝐺 Fn 𝐶))
4 fnun 5005 . . 3 (((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
53, 4sylan 267 . 2 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺) Fn (𝐴𝐶))
6 rnun 4732 . . 3 ran (𝐹𝐺) = (ran 𝐹 ∪ ran 𝐺)
7 forn 5109 . . . . 5 (𝐹:𝐴onto𝐵 → ran 𝐹 = 𝐵)
87ad2antrr 457 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran 𝐹 = 𝐵)
9 forn 5109 . . . . 5 (𝐺:𝐶onto𝐷 → ran 𝐺 = 𝐷)
109ad2antlr 458 . . . 4 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran 𝐺 = 𝐷)
118, 10uneq12d 3098 . . 3 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (ran 𝐹 ∪ ran 𝐺) = (𝐵𝐷))
126, 11syl5eq 2084 . 2 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → ran (𝐹𝐺) = (𝐵𝐷))
13 df-fo 4908 . 2 ((𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷) ↔ ((𝐹𝐺) Fn (𝐴𝐶) ∧ ran (𝐹𝐺) = (𝐵𝐷)))
145, 12, 13sylanbrc 394 1 (((𝐹:𝐴onto𝐵𝐺:𝐶onto𝐷) ∧ (𝐴𝐶) = ∅) → (𝐹𝐺):(𝐴𝐶)–onto→(𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97   = wceq 1243  cun 2915  cin 2916  c0 3224  ran crn 4346   Fn wfn 4897  ontowfo 4900
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-fun 4904  df-fn 4905  df-f 4906  df-fo 4908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator