![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnun | GIF version |
Description: Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
rnun | ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvun 4729 | . . . 4 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) | |
2 | 1 | dmeqi 4536 | . . 3 ⊢ dom ◡(𝐴 ∪ 𝐵) = dom (◡𝐴 ∪ ◡𝐵) |
3 | dmun 4542 | . . 3 ⊢ dom (◡𝐴 ∪ ◡𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) | |
4 | 2, 3 | eqtri 2060 | . 2 ⊢ dom ◡(𝐴 ∪ 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
5 | df-rn 4356 | . 2 ⊢ ran (𝐴 ∪ 𝐵) = dom ◡(𝐴 ∪ 𝐵) | |
6 | df-rn 4356 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
7 | df-rn 4356 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
8 | 6, 7 | uneq12i 3095 | . 2 ⊢ (ran 𝐴 ∪ ran 𝐵) = (dom ◡𝐴 ∪ dom ◡𝐵) |
9 | 4, 5, 8 | 3eqtr4i 2070 | 1 ⊢ ran (𝐴 ∪ 𝐵) = (ran 𝐴 ∪ ran 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∪ cun 2915 ◡ccnv 4344 dom cdm 4345 ran crn 4346 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-cnv 4353 df-dm 4355 df-rn 4356 |
This theorem is referenced by: imaundi 4736 imaundir 4737 rnpropg 4800 fun 5063 foun 5145 fpr 5345 fprg 5346 |
Copyright terms: Public domain | W3C validator |