Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp2r | GIF version |
Description: Simplification of triple conjunction. (Contributed by NM, 9-Nov-2011.) |
Ref | Expression |
---|---|
simp2r | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 103 | . 2 ⊢ ((𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | 3ad2ant2 926 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒) ∧ 𝜃) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∧ w3a 885 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 df-3an 887 |
This theorem is referenced by: simpl2r 958 simpr2r 964 simp12r 1018 simp22r 1024 simp32r 1030 issod 4056 funprg 4949 fsnunf 5362 f1oiso2 5466 tfrlemibxssdm 5941 ecopovtrn 6203 ecopovtrng 6206 addassnqg 6480 ltsonq 6496 ltanqg 6498 ltmnqg 6499 addassnq0 6560 recexprlem1ssl 6731 mulasssrg 6843 distrsrg 6844 lttrsr 6847 ltsosr 6849 ltasrg 6855 mulextsr1lem 6864 mulextsr1 6865 axmulass 6947 axdistr 6948 dmdcanap 7698 lediv2 7857 ltdiv23 7858 lediv23 7859 expaddzaplem 9298 expaddzap 9299 expmulzap 9301 expdivap 9305 |
Copyright terms: Public domain | W3C validator |