Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltmnqg GIF version

Theorem ltmnqg 6499
 Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by Jim Kingdon, 22-Sep-2019.)
Assertion
Ref Expression
ltmnqg ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))

Proof of Theorem ltmnqg
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nqqs 6446 . 2 Q = ((N × N) / ~Q )
2 breq1 3767 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ))
3 oveq2 5520 . . . 4 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴))
43breq1d 3774 . . 3 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )))
52, 4bibi12d 224 . 2 ([⟨𝑥, 𝑦⟩] ~Q = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ))))
6 breq2 3768 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q𝐴 <Q 𝐵))
7 oveq2 5520 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵))
87breq2d 3776 . . 3 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → (([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵)))
96, 8bibi12d 224 . 2 ([⟨𝑧, 𝑤⟩] ~Q = 𝐵 → ((𝐴 <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )) ↔ (𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵))))
10 oveq1 5519 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) = (𝐶 ·Q 𝐴))
11 oveq1 5519 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵) = (𝐶 ·Q 𝐵))
1210, 11breq12d 3777 . . 3 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → (([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵) ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
1312bibi2d 221 . 2 ([⟨𝑣, 𝑢⟩] ~Q = 𝐶 → ((𝐴 <Q 𝐵 ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐴) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q 𝐵)) ↔ (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))))
14 mulclpi 6426 . . . . . . . 8 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) ∈ N)
1514adantl 262 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) ∈ N)
16 simp1l 928 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑥N)
17 simp2r 931 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑤N)
1815, 16, 17caovcld 5654 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑥 ·N 𝑤) ∈ N)
19 simp1r 929 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑦N)
20 simp2l 930 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑧N)
2115, 19, 20caovcld 5654 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑦 ·N 𝑧) ∈ N)
22 mulclpi 6426 . . . . . . 7 ((𝑣N𝑢N) → (𝑣 ·N 𝑢) ∈ N)
23223ad2ant3 927 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑢) ∈ N)
24 ltmpig 6437 . . . . . 6 (((𝑥 ·N 𝑤) ∈ N ∧ (𝑦 ·N 𝑧) ∈ N ∧ (𝑣 ·N 𝑢) ∈ N) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
2518, 21, 23, 24syl3anc 1135 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
26 simp3l 932 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑣N)
27 simp3r 933 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → 𝑢N)
28 mulcompig 6429 . . . . . . . 8 ((𝑓N𝑔N) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
2928adantl 262 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔N)) → (𝑓 ·N 𝑔) = (𝑔 ·N 𝑓))
30 mulasspig 6430 . . . . . . . 8 ((𝑓N𝑔NN) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3130adantl 262 . . . . . . 7 ((((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) ∧ (𝑓N𝑔NN)) → ((𝑓 ·N 𝑔) ·N ) = (𝑓 ·N (𝑔 ·N )))
3226, 16, 27, 29, 31, 17, 15caov4d 5685 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) = ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)))
3327, 19, 26, 29, 31, 20, 15caov4d 5685 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧)) = ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)))
34 mulcompig 6429 . . . . . . . . . 10 ((𝑢N𝑣N) → (𝑢 ·N 𝑣) = (𝑣 ·N 𝑢))
3534oveq1d 5527 . . . . . . . . 9 ((𝑢N𝑣N) → ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
3635ancoms 255 . . . . . . . 8 ((𝑣N𝑢N) → ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
37363ad2ant3 927 . . . . . . 7 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑣) ·N (𝑦 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
3833, 37eqtrd 2072 . . . . . 6 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧)) = ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧)))
3932, 38breq12d 3777 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧)) ↔ ((𝑣 ·N 𝑢) ·N (𝑥 ·N 𝑤)) <N ((𝑣 ·N 𝑢) ·N (𝑦 ·N 𝑧))))
4025, 39bitr4d 180 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ((𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧) ↔ ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧))))
41 ordpipqqs 6472 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
42413adant3 924 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ (𝑥 ·N 𝑤) <N (𝑦 ·N 𝑧)))
4315, 26, 16caovcld 5654 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑥) ∈ N)
4415, 27, 19caovcld 5654 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑦) ∈ N)
4515, 26, 20caovcld 5654 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑣 ·N 𝑧) ∈ N)
4615, 27, 17caovcld 5654 . . . . 5 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (𝑢 ·N 𝑤) ∈ N)
47 ordpipqqs 6472 . . . . 5 ((((𝑣 ·N 𝑥) ∈ N ∧ (𝑢 ·N 𝑦) ∈ N) ∧ ((𝑣 ·N 𝑧) ∈ N ∧ (𝑢 ·N 𝑤) ∈ N)) → ([⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ↔ ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧))))
4843, 44, 45, 46, 47syl22anc 1136 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ↔ ((𝑣 ·N 𝑥) ·N (𝑢 ·N 𝑤)) <N ((𝑢 ·N 𝑦) ·N (𝑣 ·N 𝑧))))
4940, 42, 483bitr4d 209 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ))
50 mulpipqqs 6471 . . . . . 6 (((𝑣N𝑢N) ∧ (𝑥N𝑦N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q )
5150ancoms 255 . . . . 5 (((𝑥N𝑦N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q )
52513adant2 923 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) = [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q )
53 mulpipqqs 6471 . . . . . 6 (((𝑣N𝑢N) ∧ (𝑧N𝑤N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q )
5453ancoms 255 . . . . 5 (((𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q )
55543adant1 922 . . . 4 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) = [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q )
5652, 55breq12d 3777 . . 3 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → (([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q ) ↔ [⟨(𝑣 ·N 𝑥), (𝑢 ·N 𝑦)⟩] ~Q <Q [⟨(𝑣 ·N 𝑧), (𝑢 ·N 𝑤)⟩] ~Q ))
5749, 56bitr4d 180 . 2 (((𝑥N𝑦N) ∧ (𝑧N𝑤N) ∧ (𝑣N𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q <Q [⟨𝑧, 𝑤⟩] ~Q ↔ ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑥, 𝑦⟩] ~Q ) <Q ([⟨𝑣, 𝑢⟩] ~Q ·Q [⟨𝑧, 𝑤⟩] ~Q )))
581, 5, 9, 13, 573ecoptocl 6195 1 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ↔ wb 98   ∧ w3a 885   = wceq 1243   ∈ wcel 1393  ⟨cop 3378   class class class wbr 3764  (class class class)co 5512  [cec 6104  Ncnpi 6370   ·N cmi 6372
 Copyright terms: Public domain W3C validator