ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  recexprlem1ssl GIF version

Theorem recexprlem1ssl 6731
Description: The lower cut of one is a subset of the lower cut of 𝐴 ·P 𝐵. Lemma for recexpr 6736. (Contributed by Jim Kingdon, 27-Dec-2019.)
Hypothesis
Ref Expression
recexpr.1 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
Assertion
Ref Expression
recexprlem1ssl (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem recexprlem1ssl
Dummy variables 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1prl 6653 . . . 4 (1st ‘1P) = {𝑤𝑤 <Q 1Q}
21abeq2i 2148 . . 3 (𝑤 ∈ (1st ‘1P) ↔ 𝑤 <Q 1Q)
3 rec1nq 6493 . . . . . . 7 (*Q‘1Q) = 1Q
4 ltrnqi 6519 . . . . . . 7 (𝑤 <Q 1Q → (*Q‘1Q) <Q (*Q𝑤))
53, 4syl5eqbrr 3798 . . . . . 6 (𝑤 <Q 1Q → 1Q <Q (*Q𝑤))
6 prop 6573 . . . . . . 7 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
7 prmuloc2 6665 . . . . . . 7 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
86, 7sylan 267 . . . . . 6 ((𝐴P ∧ 1Q <Q (*Q𝑤)) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
95, 8sylan2 270 . . . . 5 ((𝐴P𝑤 <Q 1Q) → ∃𝑣 ∈ (1st𝐴)(𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
10 prnmaxl 6586 . . . . . . . 8 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
116, 10sylan 267 . . . . . . 7 ((𝐴P𝑣 ∈ (1st𝐴)) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
1211ad2ant2r 478 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧)
13 elprnql 6579 . . . . . . . . . . . . . 14 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑣 ∈ (1st𝐴)) → 𝑣Q)
146, 13sylan 267 . . . . . . . . . . . . 13 ((𝐴P𝑣 ∈ (1st𝐴)) → 𝑣Q)
1514ad2ant2r 478 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣Q)
16153adant3 924 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑣Q)
17 simp1r 929 . . . . . . . . . . . 12 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤 <Q 1Q)
18 ltrelnq 6463 . . . . . . . . . . . . . 14 <Q ⊆ (Q × Q)
1918brel 4392 . . . . . . . . . . . . 13 (𝑤 <Q 1Q → (𝑤Q ∧ 1QQ))
2019simpld 105 . . . . . . . . . . . 12 (𝑤 <Q 1Q𝑤Q)
2117, 20syl 14 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤Q)
22 simp3 906 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑣 <Q 𝑧)
23 simp2r 931 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))
24 simpr 103 . . . . . . . . . . . 12 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)))
25 ltrnqi 6519 . . . . . . . . . . . . . 14 (𝑣 <Q 𝑧 → (*Q𝑧) <Q (*Q𝑣))
26 ltmnqg 6499 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔QQ) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
2726adantl 262 . . . . . . . . . . . . . . 15 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → (𝑓 <Q 𝑔 ↔ ( ·Q 𝑓) <Q ( ·Q 𝑔)))
28 simprl 483 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣 <Q 𝑧)
2918brel 4392 . . . . . . . . . . . . . . . . 17 (𝑣 <Q 𝑧 → (𝑣Q𝑧Q))
3029simprd 107 . . . . . . . . . . . . . . . 16 (𝑣 <Q 𝑧𝑧Q)
31 recclnq 6490 . . . . . . . . . . . . . . . 16 (𝑧Q → (*Q𝑧) ∈ Q)
3228, 30, 313syl 17 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑧) ∈ Q)
33 recclnq 6490 . . . . . . . . . . . . . . . 16 (𝑣Q → (*Q𝑣) ∈ Q)
3433ad2antrr 457 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑣) ∈ Q)
35 simplr 482 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑤Q)
36 mulcomnqg 6481 . . . . . . . . . . . . . . . 16 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
3736adantl 262 . . . . . . . . . . . . . . 15 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) = (𝑔 ·Q 𝑓))
3827, 32, 34, 35, 37caovord2d 5670 . . . . . . . . . . . . . 14 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q𝑧) <Q (*Q𝑣) ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
3925, 38syl5ib 143 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 → ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
40 1nq 6464 . . . . . . . . . . . . . . . . . 18 1QQ
41 mulidnq 6487 . . . . . . . . . . . . . . . . . 18 (1QQ → (1Q ·Q 1Q) = 1Q)
4240, 41ax-mp 7 . . . . . . . . . . . . . . . . 17 (1Q ·Q 1Q) = 1Q
43 mulcomnqg 6481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣Q ∧ (*Q𝑣) ∈ Q) → (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣))
4433, 43mpdan 398 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = ((*Q𝑣) ·Q 𝑣))
45 recidnq 6491 . . . . . . . . . . . . . . . . . . . . 21 (𝑣Q → (𝑣 ·Q (*Q𝑣)) = 1Q)
4644, 45eqtr3d 2074 . . . . . . . . . . . . . . . . . . . 20 (𝑣Q → ((*Q𝑣) ·Q 𝑣) = 1Q)
47 recidnq 6491 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (𝑤 ·Q (*Q𝑤)) = 1Q)
4846, 47oveqan12d 5531 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q𝑤Q) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
4948adantr 261 . . . . . . . . . . . . . . . . . 18 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (1Q ·Q 1Q))
50 simpll 481 . . . . . . . . . . . . . . . . . . 19 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑣Q)
51 mulassnqg 6482 . . . . . . . . . . . . . . . . . . . 20 ((𝑓Q𝑔QQ) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
5251adantl 262 . . . . . . . . . . . . . . . . . . 19 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔QQ)) → ((𝑓 ·Q 𝑔) ·Q ) = (𝑓 ·Q (𝑔 ·Q )))
53 recclnq 6490 . . . . . . . . . . . . . . . . . . . 20 (𝑤Q → (*Q𝑤) ∈ Q)
5435, 53syl 14 . . . . . . . . . . . . . . . . . . 19 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q𝑤) ∈ Q)
55 mulclnq 6474 . . . . . . . . . . . . . . . . . . . 20 ((𝑓Q𝑔Q) → (𝑓 ·Q 𝑔) ∈ Q)
5655adantl 262 . . . . . . . . . . . . . . . . . . 19 ((((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) ∧ (𝑓Q𝑔Q)) → (𝑓 ·Q 𝑔) ∈ Q)
5734, 50, 35, 37, 52, 54, 56caov4d 5685 . . . . . . . . . . . . . . . . . 18 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑣) ·Q (𝑤 ·Q (*Q𝑤))) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))))
5849, 57eqtr3d 2074 . . . . . . . . . . . . . . . . 17 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (1Q ·Q 1Q) = (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))))
5942, 58syl5reqr 2087 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q)
60 mulclnq 6474 . . . . . . . . . . . . . . . . . . 19 (((*Q𝑣) ∈ Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
6133, 60sylan 267 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → ((*Q𝑣) ·Q 𝑤) ∈ Q)
62 mulclnq 6474 . . . . . . . . . . . . . . . . . . 19 ((𝑣Q ∧ (*Q𝑤) ∈ Q) → (𝑣 ·Q (*Q𝑤)) ∈ Q)
6353, 62sylan2 270 . . . . . . . . . . . . . . . . . 18 ((𝑣Q𝑤Q) → (𝑣 ·Q (*Q𝑤)) ∈ Q)
64 recmulnqg 6489 . . . . . . . . . . . . . . . . . 18 ((((*Q𝑣) ·Q 𝑤) ∈ Q ∧ (𝑣 ·Q (*Q𝑤)) ∈ Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6561, 63, 64syl2anc 391 . . . . . . . . . . . . . . . . 17 ((𝑣Q𝑤Q) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6665adantr 261 . . . . . . . . . . . . . . . 16 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)) ↔ (((*Q𝑣) ·Q 𝑤) ·Q (𝑣 ·Q (*Q𝑤))) = 1Q))
6759, 66mpbird 156 . . . . . . . . . . . . . . 15 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (*Q‘((*Q𝑣) ·Q 𝑤)) = (𝑣 ·Q (*Q𝑤)))
6867eleq1d 2106 . . . . . . . . . . . . . 14 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴) ↔ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)))
6968biimprd 147 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴) → (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)))
70 breq2 3768 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (((*Q𝑧) ·Q 𝑤) <Q 𝑦 ↔ ((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤)))
71 fveq2 5178 . . . . . . . . . . . . . . . . . . 19 (𝑦 = ((*Q𝑣) ·Q 𝑤) → (*Q𝑦) = (*Q‘((*Q𝑣) ·Q 𝑤)))
7271eleq1d 2106 . . . . . . . . . . . . . . . . . 18 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((*Q𝑦) ∈ (2nd𝐴) ↔ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)))
7370, 72anbi12d 442 . . . . . . . . . . . . . . . . 17 (𝑦 = ((*Q𝑣) ·Q 𝑤) → ((((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)) ↔ (((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴))))
7473spcegv 2641 . . . . . . . . . . . . . . . 16 (((*Q𝑣) ·Q 𝑤) ∈ Q → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
7561, 74syl 14 . . . . . . . . . . . . . . 15 ((𝑣Q𝑤Q) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))))
76 recexpr.1 . . . . . . . . . . . . . . . 16 𝐵 = ⟨{𝑥 ∣ ∃𝑦(𝑥 <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴))}, {𝑥 ∣ ∃𝑦(𝑦 <Q 𝑥 ∧ (*Q𝑦) ∈ (1st𝐴))}⟩
7776recexprlemell 6720 . . . . . . . . . . . . . . 15 (((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵) ↔ ∃𝑦(((*Q𝑧) ·Q 𝑤) <Q 𝑦 ∧ (*Q𝑦) ∈ (2nd𝐴)))
7875, 77syl6ibr 151 . . . . . . . . . . . . . 14 ((𝑣Q𝑤Q) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
7978adantr 261 . . . . . . . . . . . . 13 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((((*Q𝑧) ·Q 𝑤) <Q ((*Q𝑣) ·Q 𝑤) ∧ (*Q‘((*Q𝑣) ·Q 𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
8039, 69, 79syl2and 279 . . . . . . . . . . . 12 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵)))
8124, 80mpd 13 . . . . . . . . . . 11 (((𝑣Q𝑤Q) ∧ (𝑣 <Q 𝑧 ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵))
8216, 21, 22, 23, 81syl22anc 1136 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → ((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵))
83303ad2ant3 927 . . . . . . . . . . 11 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑧Q)
84 mulidnq 6487 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = 𝑤)
85 mulcomnqg 6481 . . . . . . . . . . . . . . 15 ((𝑤Q ∧ 1QQ) → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8640, 85mpan2 401 . . . . . . . . . . . . . 14 (𝑤Q → (𝑤 ·Q 1Q) = (1Q ·Q 𝑤))
8784, 86eqtr3d 2074 . . . . . . . . . . . . 13 (𝑤Q𝑤 = (1Q ·Q 𝑤))
8887adantl 262 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → 𝑤 = (1Q ·Q 𝑤))
89 recidnq 6491 . . . . . . . . . . . . . 14 (𝑧Q → (𝑧 ·Q (*Q𝑧)) = 1Q)
9089oveq1d 5527 . . . . . . . . . . . . 13 (𝑧Q → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
9190adantr 261 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (1Q ·Q 𝑤))
92 mulassnqg 6482 . . . . . . . . . . . . . 14 ((𝑧Q ∧ (*Q𝑧) ∈ Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9331, 92syl3an2 1169 . . . . . . . . . . . . 13 ((𝑧Q𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
94933anidm12 1192 . . . . . . . . . . . 12 ((𝑧Q𝑤Q) → ((𝑧 ·Q (*Q𝑧)) ·Q 𝑤) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9588, 91, 943eqtr2d 2078 . . . . . . . . . . 11 ((𝑧Q𝑤Q) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9683, 21, 95syl2anc 391 . . . . . . . . . 10 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
97 oveq2 5520 . . . . . . . . . . . 12 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑧 ·Q 𝑥) = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤)))
9897eqeq2d 2051 . . . . . . . . . . 11 (𝑥 = ((*Q𝑧) ·Q 𝑤) → (𝑤 = (𝑧 ·Q 𝑥) ↔ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))))
9998rspcev 2656 . . . . . . . . . 10 ((((*Q𝑧) ·Q 𝑤) ∈ (1st𝐵) ∧ 𝑤 = (𝑧 ·Q ((*Q𝑧) ·Q 𝑤))) → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥))
10082, 96, 99syl2anc 391 . . . . . . . . 9 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴)) ∧ 𝑣 <Q 𝑧) → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥))
1011003expia 1106 . . . . . . . 8 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑣 <Q 𝑧 → ∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
102101reximdv 2420 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧 → ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
10376recexprlempr 6730 . . . . . . . . 9 (𝐴P𝐵P)
104 df-imp 6567 . . . . . . . . . 10 ·P = (𝑦P, 𝑤P ↦ ⟨{𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (1st𝑦) ∧ 𝑔 ∈ (1st𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}, {𝑢Q ∣ ∃𝑓Q𝑔Q (𝑓 ∈ (2nd𝑦) ∧ 𝑔 ∈ (2nd𝑤) ∧ 𝑢 = (𝑓 ·Q 𝑔))}⟩)
105104, 55genpelvl 6610 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
106103, 105mpdan 398 . . . . . . . 8 (𝐴P → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
107106ad2antrr 457 . . . . . . 7 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)) ↔ ∃𝑧 ∈ (1st𝐴)∃𝑥 ∈ (1st𝐵)𝑤 = (𝑧 ·Q 𝑥)))
108102, 107sylibrd 158 . . . . . 6 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → (∃𝑧 ∈ (1st𝐴)𝑣 <Q 𝑧𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
10912, 108mpd 13 . . . . 5 (((𝐴P𝑤 <Q 1Q) ∧ (𝑣 ∈ (1st𝐴) ∧ (𝑣 ·Q (*Q𝑤)) ∈ (2nd𝐴))) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)))
1109, 109rexlimddv 2437 . . . 4 ((𝐴P𝑤 <Q 1Q) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵)))
111110ex 108 . . 3 (𝐴P → (𝑤 <Q 1Q𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
1122, 111syl5bi 141 . 2 (𝐴P → (𝑤 ∈ (1st ‘1P) → 𝑤 ∈ (1st ‘(𝐴 ·P 𝐵))))
113112ssrdv 2951 1 (𝐴P → (1st ‘1P) ⊆ (1st ‘(𝐴 ·P 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  w3a 885   = wceq 1243  wex 1381  wcel 1393  {cab 2026  wrex 2307  wss 2917  cop 3378   class class class wbr 3764  cfv 4902  (class class class)co 5512  1st c1st 5765  2nd c2nd 5766  Qcnq 6378  1Qc1q 6379   ·Q cmq 6381  *Qcrq 6382   <Q cltq 6383  Pcnp 6389  1Pc1p 6390   ·P cmp 6392
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-imp 6567
This theorem is referenced by:  recexprlemex  6735
  Copyright terms: Public domain W3C validator