ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addassnq0 GIF version

Theorem addassnq0 6560
Description: Addition of non-negaative fractions is associative. (Contributed by Jim Kingdon, 29-Nov-2019.)
Assertion
Ref Expression
addassnq0 ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))

Proof of Theorem addassnq0
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 𝑢 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nq0 6523 . . . 4 Q0 = ((ω × N) / ~Q0 )
2 oveq2 5520 . . . . . . 7 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 +Q0 𝐵))
32oveq1d 5527 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
4 oveq1 5519 . . . . . . 7 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
54oveq2d 5528 . . . . . 6 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
63, 5eqeq12d 2054 . . . . 5 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → (((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ ((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
76imbi2d 219 . . . 4 ([⟨𝑧, 𝑤⟩] ~Q0 = 𝐵 → ((𝐴Q0 → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))) ↔ (𝐴Q0 → ((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))))
8 oveq2 5520 . . . . . 6 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → ((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ((𝐴 +Q0 𝐵) +Q0 𝐶))
9 oveq2 5520 . . . . . . 7 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐵 +Q0 𝐶))
109oveq2d 5528 . . . . . 6 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))
118, 10eqeq12d 2054 . . . . 5 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → (((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶))))
1211imbi2d 219 . . . 4 ([⟨𝑣, 𝑢⟩] ~Q0 = 𝐶 → ((𝐴Q0 → ((𝐴 +Q0 𝐵) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 (𝐵 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))) ↔ (𝐴Q0 → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))))
13 oveq1 5519 . . . . . . . . 9 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = (𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ))
1413oveq1d 5527 . . . . . . . 8 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
15 oveq1 5519 . . . . . . . 8 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
1614, 15eqeq12d 2054 . . . . . . 7 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ((([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) ↔ ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
1716imbi2d 219 . . . . . 6 ([⟨𝑥, 𝑦⟩] ~Q0 = 𝐴 → ((((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))) ↔ (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))))
18 simp1l 928 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑥 ∈ ω)
19 simp2r 931 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑤N)
20 pinn 6407 . . . . . . . . . . . . . 14 (𝑤N𝑤 ∈ ω)
2119, 20syl 14 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑤 ∈ ω)
22 simp3r 933 . . . . . . . . . . . . . 14 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑢N)
23 pinn 6407 . . . . . . . . . . . . . 14 (𝑢N𝑢 ∈ ω)
2422, 23syl 14 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑢 ∈ ω)
25 nnmcl 6060 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑢 ∈ ω) → (𝑤 ·𝑜 𝑢) ∈ ω)
2621, 24, 25syl2anc 391 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑤 ·𝑜 𝑢) ∈ ω)
27 nnmcl 6060 . . . . . . . . . . . 12 ((𝑥 ∈ ω ∧ (𝑤 ·𝑜 𝑢) ∈ ω) → (𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) ∈ ω)
2818, 26, 27syl2anc 391 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) ∈ ω)
29 simp1r 929 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑦N)
30 pinn 6407 . . . . . . . . . . . . 13 (𝑦N𝑦 ∈ ω)
3129, 30syl 14 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑦 ∈ ω)
32 simp2l 930 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑧 ∈ ω)
33 nnmcl 6060 . . . . . . . . . . . . 13 ((𝑧 ∈ ω ∧ 𝑢 ∈ ω) → (𝑧 ·𝑜 𝑢) ∈ ω)
3432, 24, 33syl2anc 391 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑧 ·𝑜 𝑢) ∈ ω)
35 nnmcl 6060 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝑧 ·𝑜 𝑢) ∈ ω) → (𝑦 ·𝑜 (𝑧 ·𝑜 𝑢)) ∈ ω)
3631, 34, 35syl2anc 391 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑦 ·𝑜 (𝑧 ·𝑜 𝑢)) ∈ ω)
37 simp3l 932 . . . . . . . . . . . . 13 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → 𝑣 ∈ ω)
38 nnmcl 6060 . . . . . . . . . . . . 13 ((𝑤 ∈ ω ∧ 𝑣 ∈ ω) → (𝑤 ·𝑜 𝑣) ∈ ω)
3921, 37, 38syl2anc 391 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑤 ·𝑜 𝑣) ∈ ω)
40 nnmcl 6060 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝑤 ·𝑜 𝑣) ∈ ω) → (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣)) ∈ ω)
4131, 39, 40syl2anc 391 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣)) ∈ ω)
42 nnaass 6064 . . . . . . . . . . 11 (((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) ∈ ω ∧ (𝑦 ·𝑜 (𝑧 ·𝑜 𝑢)) ∈ ω ∧ (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣)) ∈ ω) → (((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 (𝑧 ·𝑜 𝑢))) +𝑜 (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣))) = ((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 ((𝑦 ·𝑜 (𝑧 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣)))))
4328, 36, 41, 42syl3anc 1135 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 (𝑧 ·𝑜 𝑢))) +𝑜 (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣))) = ((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 ((𝑦 ·𝑜 (𝑧 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣)))))
44 nnmcom 6068 . . . . . . . . . . . . 13 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω) → (𝑓 ·𝑜 𝑔) = (𝑔 ·𝑜 𝑓))
4544adantl 262 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 ·𝑜 𝑔) = (𝑔 ·𝑜 𝑓))
46 nndir 6069 . . . . . . . . . . . . 13 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω) → ((𝑓 +𝑜 𝑔) ·𝑜 ) = ((𝑓 ·𝑜 ) +𝑜 (𝑔 ·𝑜 )))
4746adantl 262 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω)) → ((𝑓 +𝑜 𝑔) ·𝑜 ) = ((𝑓 ·𝑜 ) +𝑜 (𝑔 ·𝑜 )))
48 nnmass 6066 . . . . . . . . . . . . 13 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω) → ((𝑓 ·𝑜 𝑔) ·𝑜 ) = (𝑓 ·𝑜 (𝑔 ·𝑜 )))
4948adantl 262 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω ∧ ∈ ω)) → ((𝑓 ·𝑜 𝑔) ·𝑜 ) = (𝑓 ·𝑜 (𝑔 ·𝑜 )))
50 nnmcl 6060 . . . . . . . . . . . . 13 ((𝑓 ∈ ω ∧ 𝑔 ∈ ω) → (𝑓 ·𝑜 𝑔) ∈ ω)
5150adantl 262 . . . . . . . . . . . 12 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) ∧ (𝑓 ∈ ω ∧ 𝑔 ∈ ω)) → (𝑓 ·𝑜 𝑔) ∈ ω)
5245, 47, 49, 51, 18, 31, 21, 32, 24caovdilemd 5692 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) = ((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 (𝑧 ·𝑜 𝑢))))
53 nnmass 6066 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑤 ∈ ω ∧ 𝑣 ∈ ω) → ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣) = (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣)))
5431, 21, 37, 53syl3anc 1135 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣) = (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣)))
5552, 54oveq12d 5530 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)) = (((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 (𝑧 ·𝑜 𝑢))) +𝑜 (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣))))
56 nndi 6065 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ (𝑧 ·𝑜 𝑢) ∈ ω ∧ (𝑤 ·𝑜 𝑣) ∈ ω) → (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣))) = ((𝑦 ·𝑜 (𝑧 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣))))
5731, 34, 39, 56syl3anc 1135 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣))) = ((𝑦 ·𝑜 (𝑧 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣))))
5857oveq2d 5528 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))) = ((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 ((𝑦 ·𝑜 (𝑧 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 (𝑤 ·𝑜 𝑣)))))
5943, 55, 583eqtr4d 2082 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)) = ((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))))
60 nnmass 6066 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑤 ∈ ω ∧ 𝑢 ∈ ω) → ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢) = (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢)))
6131, 21, 24, 60syl3anc 1135 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢) = (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢)))
62 opeq12 3551 . . . . . . . . . 10 ((((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)) = ((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))) ∧ ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢) = (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢))) → ⟨((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)), ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢)⟩ = ⟨((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))), (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢))⟩)
6362eceq1d 6142 . . . . . . . . 9 ((((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)) = ((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))) ∧ ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢) = (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢))) → [⟨((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)), ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢)⟩] ~Q0 = [⟨((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))), (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢))⟩] ~Q0 )
6459, 61, 63syl2anc 391 . . . . . . . 8 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → [⟨((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)), ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢)⟩] ~Q0 = [⟨((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))), (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢))⟩] ~Q0 )
65 addnnnq0 6547 . . . . . . . . . . . 12 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 )
6665oveq1d 5527 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
6766adantr 261 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))
68 addassnq0lemcl 6559 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) → (((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ ω ∧ (𝑦 ·𝑜 𝑤) ∈ N))
69 addnnnq0 6547 . . . . . . . . . . 11 (((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ∈ ω ∧ (𝑦 ·𝑜 𝑤) ∈ N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)), ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢)⟩] ~Q0 )
7068, 69sylan 267 . . . . . . . . . 10 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)), (𝑦 ·𝑜 𝑤)⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)), ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢)⟩] ~Q0 )
7167, 70eqtrd 2072 . . . . . . . . 9 ((((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N)) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)), ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢)⟩] ~Q0 )
72713impa 1099 . . . . . . . 8 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((((𝑥 ·𝑜 𝑤) +𝑜 (𝑦 ·𝑜 𝑧)) ·𝑜 𝑢) +𝑜 ((𝑦 ·𝑜 𝑤) ·𝑜 𝑣)), ((𝑦 ·𝑜 𝑤) ·𝑜 𝑢)⟩] ~Q0 )
73 addnnnq0 6547 . . . . . . . . . . . 12 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = [⟨((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)), (𝑤 ·𝑜 𝑢)⟩] ~Q0 )
7473oveq2d 5528 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)), (𝑤 ·𝑜 𝑢)⟩] ~Q0 ))
7574adantl 262 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)), (𝑤 ·𝑜 𝑢)⟩] ~Q0 ))
76 addassnq0lemcl 6559 . . . . . . . . . . 11 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)) ∈ ω ∧ (𝑤 ·𝑜 𝑢) ∈ N))
77 addnnnq0 6547 . . . . . . . . . . 11 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)) ∈ ω ∧ (𝑤 ·𝑜 𝑢) ∈ N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)), (𝑤 ·𝑜 𝑢)⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))), (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢))⟩] ~Q0 )
7876, 77sylan2 270 . . . . . . . . . 10 (((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)), (𝑤 ·𝑜 𝑢)⟩] ~Q0 ) = [⟨((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))), (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢))⟩] ~Q0 )
7975, 78eqtrd 2072 . . . . . . . . 9 (((𝑥 ∈ ω ∧ 𝑦N) ∧ ((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N))) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = [⟨((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))), (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢))⟩] ~Q0 )
80793impb 1100 . . . . . . . 8 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )) = [⟨((𝑥 ·𝑜 (𝑤 ·𝑜 𝑢)) +𝑜 (𝑦 ·𝑜 ((𝑧 ·𝑜 𝑢) +𝑜 (𝑤 ·𝑜 𝑣)))), (𝑦 ·𝑜 (𝑤 ·𝑜 𝑢))⟩] ~Q0 )
8164, 72, 803eqtr4d 2082 . . . . . . 7 (((𝑥 ∈ ω ∧ 𝑦N) ∧ (𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 )))
82813expib 1107 . . . . . 6 ((𝑥 ∈ ω ∧ 𝑦N) → (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (([⟨𝑥, 𝑦⟩] ~Q0 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = ([⟨𝑥, 𝑦⟩] ~Q0 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
831, 17, 82ecoptocl 6193 . . . . 5 (𝐴Q0 → (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
8483com12 27 . . . 4 (((𝑧 ∈ ω ∧ 𝑤N) ∧ (𝑣 ∈ ω ∧ 𝑢N)) → (𝐴Q0 → ((𝐴 +Q0 [⟨𝑧, 𝑤⟩] ~Q0 ) +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ) = (𝐴 +Q0 ([⟨𝑧, 𝑤⟩] ~Q0 +Q0 [⟨𝑣, 𝑢⟩] ~Q0 ))))
851, 7, 12, 842ecoptocl 6194 . . 3 ((𝐵Q0𝐶Q0) → (𝐴Q0 → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶))))
8685com12 27 . 2 (𝐴Q0 → ((𝐵Q0𝐶Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶))))
87863impib 1102 1 ((𝐴Q0𝐵Q0𝐶Q0) → ((𝐴 +Q0 𝐵) +Q0 𝐶) = (𝐴 +Q0 (𝐵 +Q0 𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  w3a 885   = wceq 1243  wcel 1393  cop 3378  ωcom 4313  (class class class)co 5512   +𝑜 coa 5998   ·𝑜 comu 5999  [cec 6104  Ncnpi 6370   ~Q0 ceq0 6384  Q0cnq0 6385   +Q0 cplq0 6387
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-mi 6404  df-enq0 6522  df-nq0 6523  df-plq0 6525
This theorem is referenced by:  prarloclemcalc  6600
  Copyright terms: Public domain W3C validator