ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-setind Structured version   GIF version

Axiom ax-setind 4202
Description: Axiom of -Induction (also known as set induction). An axiom of Intuitionistic Zermelo-Fraenkel set theory. Axiom 9 of [Crosilla] p. "Axioms of CZF and IZF". This replaces the Axiom of Foundation (also called Regularity) from Zermelo-Fraenkel set theory. (Contributed by Jim Kingdon, 19-Oct-2018.)
Assertion
Ref Expression
ax-setind (𝑎(y 𝑎 [y / 𝑎]φφ) → 𝑎φ)
Distinct variable groups:   y,𝑎   φ,y
Allowed substitution hint:   φ(𝑎)

Detailed syntax breakdown of Axiom ax-setind
StepHypRef Expression
1 wph . . . . . 6 wff φ
2 va . . . . . 6 setvar 𝑎
3 vy . . . . . 6 setvar y
41, 2, 3wsb 1628 . . . . 5 wff [y / 𝑎]φ
52cv 1227 . . . . 5 class 𝑎
64, 3, 5wral 2283 . . . 4 wff y 𝑎 [y / 𝑎]φ
76, 1wi 4 . . 3 wff (y 𝑎 [y / 𝑎]φφ)
87, 2wal 1226 . 2 wff 𝑎(y 𝑎 [y / 𝑎]φφ)
91, 2wal 1226 . 2 wff 𝑎φ
108, 9wi 4 1 wff (𝑎(y 𝑎 [y / 𝑎]φφ) → 𝑎φ)
Colors of variables: wff set class
This axiom is referenced by:  setindel  4203  elirr  4206  en2lp  4214  tfi  4230  setindft  6524  setindis  6526
  Copyright terms: Public domain W3C validator