ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zfregfr GIF version

Theorem zfregfr 4298
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.)
Assertion
Ref Expression
zfregfr E Fr 𝐴

Proof of Theorem zfregfr
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-frind 4069 . 2 ( E Fr 𝐴 ↔ ∀𝑠 FrFor E 𝐴𝑠)
2 bi2.04 237 . . . . . . 7 ((∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ (𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
32albii 1359 . . . . . 6 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥(𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
4 df-ral 2311 . . . . . 6 (∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ ∀𝑥(𝑥𝐴 → (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠)))
53, 4bitr4i 176 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠))
6 sbim 1827 . . . . . . . . . . 11 ([𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ([𝑦 / 𝑥]𝑥𝐴 → [𝑦 / 𝑥]𝑥𝑠))
7 clelsb3 2142 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
8 clelsb3 2142 . . . . . . . . . . . 12 ([𝑦 / 𝑥]𝑥𝑠𝑦𝑠)
97, 8imbi12i 228 . . . . . . . . . . 11 (([𝑦 / 𝑥]𝑥𝐴 → [𝑦 / 𝑥]𝑥𝑠) ↔ (𝑦𝐴𝑦𝑠))
106, 9bitri 173 . . . . . . . . . 10 ([𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ (𝑦𝐴𝑦𝑠))
1110ralbii 2330 . . . . . . . . 9 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝑥 (𝑦𝐴𝑦𝑠))
12 ralcom3 2477 . . . . . . . . 9 (∀𝑦𝑥 (𝑦𝐴𝑦𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
1311, 12bitri 173 . . . . . . . 8 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
14 epel 4029 . . . . . . . . . 10 (𝑦 E 𝑥𝑦𝑥)
1514imbi1i 227 . . . . . . . . 9 ((𝑦 E 𝑥𝑦𝑠) ↔ (𝑦𝑥𝑦𝑠))
1615ralbii 2330 . . . . . . . 8 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) ↔ ∀𝑦𝐴 (𝑦𝑥𝑦𝑠))
1713, 16bitr4i 176 . . . . . . 7 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) ↔ ∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠))
1817imbi1i 227 . . . . . 6 ((∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
1918ralbii 2330 . . . . 5 (∀𝑥𝐴 (∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → 𝑥𝑠) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
205, 19bitri 173 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) ↔ ∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠))
21 ax-setind 4262 . . . . 5 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) → ∀𝑥(𝑥𝐴𝑥𝑠))
22 dfss2 2934 . . . . 5 (𝐴𝑠 ↔ ∀𝑥(𝑥𝐴𝑥𝑠))
2321, 22sylibr 137 . . . 4 (∀𝑥(∀𝑦𝑥 [𝑦 / 𝑥](𝑥𝐴𝑥𝑠) → (𝑥𝐴𝑥𝑠)) → 𝐴𝑠)
2420, 23sylbir 125 . . 3 (∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠)
25 df-frfor 4068 . . 3 ( FrFor E 𝐴𝑠 ↔ (∀𝑥𝐴 (∀𝑦𝐴 (𝑦 E 𝑥𝑦𝑠) → 𝑥𝑠) → 𝐴𝑠))
2624, 25mpbir 134 . 2 FrFor E 𝐴𝑠
271, 26mpgbir 1342 1 E Fr 𝐴
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241  wcel 1393  [wsb 1645  wral 2306  wss 2917   class class class wbr 3764   E cep 4024   FrFor wfrfor 4064   Fr wfr 4065
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-eprel 4026  df-frfor 4068  df-frind 4069
This theorem is referenced by:  ordfr  4299  wessep  4302  reg3exmidlemwe  4303
  Copyright terms: Public domain W3C validator