Step | Hyp | Ref
| Expression |
1 | | df-ral 2311 |
. . . . . . 7
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴))) |
2 | | imdi 239 |
. . . . . . . 8
⊢ ((𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ↔ ((𝑥 ∈ On → 𝑥 ⊆ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
3 | 2 | albii 1359 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ↔ ∀𝑥((𝑥 ∈ On → 𝑥 ⊆ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
4 | 1, 3 | bitri 173 |
. . . . . 6
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥((𝑥 ∈ On → 𝑥 ⊆ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
5 | | dfss2 2934 |
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) |
6 | 5 | imbi2i 215 |
. . . . . . . . 9
⊢ ((𝑥 ∈ On → 𝑥 ⊆ 𝐴) ↔ (𝑥 ∈ On → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) |
7 | | 19.21v 1753 |
. . . . . . . . 9
⊢
(∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) ↔ (𝑥 ∈ On → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) |
8 | 6, 7 | bitr4i 176 |
. . . . . . . 8
⊢ ((𝑥 ∈ On → 𝑥 ⊆ 𝐴) ↔ ∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) |
9 | 8 | imbi1i 227 |
. . . . . . 7
⊢ (((𝑥 ∈ On → 𝑥 ⊆ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) ↔ (∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
10 | 9 | albii 1359 |
. . . . . 6
⊢
(∀𝑥((𝑥 ∈ On → 𝑥 ⊆ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) ↔ ∀𝑥(∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
11 | 4, 10 | bitri 173 |
. . . . 5
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
12 | | simpl 102 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ 𝑥) |
13 | | tron 4119 |
. . . . . . . . . . . . . 14
⊢ Tr
On |
14 | | dftr2 3856 |
. . . . . . . . . . . . . 14
⊢ (Tr On
↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ On)) |
15 | 13, 14 | mpbi 133 |
. . . . . . . . . . . . 13
⊢
∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ On) |
16 | 15 | spi 1429 |
. . . . . . . . . . . 12
⊢
∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ On) |
17 | 16 | spi 1429 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ On) |
18 | 12, 17 | jca 290 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → (𝑦 ∈ 𝑥 ∧ 𝑦 ∈ On)) |
19 | 18 | imim1i 54 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑦 ∈ On) → 𝑦 ∈ 𝐴) → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ 𝐴)) |
20 | | impexp 250 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑦 ∈ On) → 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴))) |
21 | | impexp 250 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝑥 → (𝑥 ∈ On → 𝑦 ∈ 𝐴))) |
22 | | bi2.04 237 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑥 → (𝑥 ∈ On → 𝑦 ∈ 𝐴)) ↔ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) |
23 | 21, 22 | bitri 173 |
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) |
24 | 19, 20, 23 | 3imtr3i 189 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) |
25 | 24 | alimi 1344 |
. . . . . . 7
⊢
(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → ∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) |
26 | 25 | imim1i 54 |
. . . . . 6
⊢
((∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) → (∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
27 | 26 | alimi 1344 |
. . . . 5
⊢
(∀𝑥(∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) → ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
28 | 11, 27 | sylbi 114 |
. . . 4
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
29 | 28 | adantl 262 |
. . 3
⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
30 | | sbim 1827 |
. . . . . . . . . 10
⊢ ([𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) ↔ ([𝑦 / 𝑥]𝑥 ∈ On → [𝑦 / 𝑥]𝑥 ∈ 𝐴)) |
31 | | clelsb3 2142 |
. . . . . . . . . . 11
⊢ ([𝑦 / 𝑥]𝑥 ∈ On ↔ 𝑦 ∈ On) |
32 | | clelsb3 2142 |
. . . . . . . . . . 11
⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
33 | 31, 32 | imbi12i 228 |
. . . . . . . . . 10
⊢ (([𝑦 / 𝑥]𝑥 ∈ On → [𝑦 / 𝑥]𝑥 ∈ 𝐴) ↔ (𝑦 ∈ On → 𝑦 ∈ 𝐴)) |
34 | 30, 33 | bitri 173 |
. . . . . . . . 9
⊢ ([𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) ↔ (𝑦 ∈ On → 𝑦 ∈ 𝐴)) |
35 | 34 | ralbii 2330 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 [𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) ↔ ∀𝑦 ∈ 𝑥 (𝑦 ∈ On → 𝑦 ∈ 𝐴)) |
36 | | df-ral 2311 |
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 (𝑦 ∈ On → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴))) |
37 | 35, 36 | bitri 173 |
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 [𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴))) |
38 | 37 | imbi1i 227 |
. . . . . 6
⊢
((∀𝑦 ∈
𝑥 [𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) ↔ (∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
39 | 38 | albii 1359 |
. . . . 5
⊢
(∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) |
40 | | ax-setind 4262 |
. . . . 5
⊢
(∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) → ∀𝑥(𝑥 ∈ On → 𝑥 ∈ 𝐴)) |
41 | 39, 40 | sylbir 125 |
. . . 4
⊢
(∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) → ∀𝑥(𝑥 ∈ On → 𝑥 ∈ 𝐴)) |
42 | | dfss2 2934 |
. . . 4
⊢ (On
⊆ 𝐴 ↔
∀𝑥(𝑥 ∈ On → 𝑥 ∈ 𝐴)) |
43 | 41, 42 | sylibr 137 |
. . 3
⊢
(∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) → On ⊆ 𝐴) |
44 | 29, 43 | syl 14 |
. 2
⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → On ⊆ 𝐴) |
45 | | eqss 2960 |
. . 3
⊢ (𝐴 = On ↔ (𝐴 ⊆ On ∧ On ⊆ 𝐴)) |
46 | 45 | biimpri 124 |
. 2
⊢ ((𝐴 ⊆ On ∧ On ⊆
𝐴) → 𝐴 = On) |
47 | 44, 46 | syldan 266 |
1
⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝐴 = On) |