Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > clelsb3 | GIF version |
Description: Substitution applied to an atomic wff (class version of elsb3 1852). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
clelsb3 | ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1421 | . . 3 ⊢ Ⅎ𝑦 𝑤 ∈ 𝐴 | |
2 | 1 | sbco2 1839 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑤]𝑤 ∈ 𝐴) |
3 | nfv 1421 | . . . 4 ⊢ Ⅎ𝑤 𝑦 ∈ 𝐴 | |
4 | eleq1 2100 | . . . 4 ⊢ (𝑤 = 𝑦 → (𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
5 | 3, 4 | sbie 1674 | . . 3 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
6 | 5 | sbbii 1648 | . 2 ⊢ ([𝑥 / 𝑦][𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑥 / 𝑦]𝑦 ∈ 𝐴) |
7 | nfv 1421 | . . 3 ⊢ Ⅎ𝑤 𝑥 ∈ 𝐴 | |
8 | eleq1 2100 | . . 3 ⊢ (𝑤 = 𝑥 → (𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
9 | 7, 8 | sbie 1674 | . 2 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
10 | 2, 6, 9 | 3bitr3i 199 | 1 ⊢ ([𝑥 / 𝑦]𝑦 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 98 ∈ wcel 1393 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-cleq 2033 df-clel 2036 |
This theorem is referenced by: hblem 2145 nfraldya 2358 nfrexdya 2359 cbvreu 2531 sbcel1gv 2821 rmo3 2849 setindel 4263 elirr 4266 en2lp 4278 zfregfr 4298 tfi 4305 bdcriota 10003 |
Copyright terms: Public domain | W3C validator |