![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbi2i | GIF version |
Description: Introduce an antecedent to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 6-Feb-2013.) |
Ref | Expression |
---|---|
bi.a | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
imbi2i | ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi.a | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜒 → (𝜑 ↔ 𝜓)) |
3 | 2 | pm5.74i 169 | 1 ⊢ ((𝜒 → 𝜑) ↔ (𝜒 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: imbi12i 228 anidmdbi 378 nan 626 sbcof2 1691 sblimv 1774 sbhb 1816 sblim 1831 2sb6 1860 sbcom2v 1861 2sb6rf 1866 eu1 1925 moabs 1949 mo3h 1953 moanim 1974 2moswapdc 1990 r2alf 2341 r19.21t 2394 reu2 2729 reu8 2737 2reuswapdc 2743 2rmorex 2745 ssconb 3076 ssin 3159 reldisj 3271 ssundifim 3306 ralm 3325 unissb 3610 repizf2lem 3914 elirr 4266 en2lp 4278 tfi 4305 ssrel 4428 ssrel2 4430 fncnv 4965 fun11 4966 axcaucvglemres 6973 raluz2 8522 |
Copyright terms: Public domain | W3C validator |