![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sbim | GIF version |
Description: Implication inside and outside of substitution are equivalent. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 3-Feb-2018.) |
Ref | Expression |
---|---|
sbim | ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbimv 1773 | . . . 4 ⊢ ([𝑧 / 𝑥](𝜑 → 𝜓) ↔ ([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓)) | |
2 | 1 | sbbii 1648 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓)) |
3 | sbimv 1773 | . . 3 ⊢ ([𝑦 / 𝑧]([𝑧 / 𝑥]𝜑 → [𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) | |
4 | 2, 3 | bitri 173 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓)) |
5 | ax-17 1419 | . . 3 ⊢ ((𝜑 → 𝜓) → ∀𝑧(𝜑 → 𝜓)) | |
6 | 5 | sbco2v 1821 | . 2 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥](𝜑 → 𝜓) ↔ [𝑦 / 𝑥](𝜑 → 𝜓)) |
7 | ax-17 1419 | . . . 4 ⊢ (𝜑 → ∀𝑧𝜑) | |
8 | 7 | sbco2v 1821 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
9 | ax-17 1419 | . . . 4 ⊢ (𝜓 → ∀𝑧𝜓) | |
10 | 9 | sbco2v 1821 | . . 3 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜓 ↔ [𝑦 / 𝑥]𝜓) |
11 | 8, 10 | imbi12i 228 | . 2 ⊢ (([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 → [𝑦 / 𝑧][𝑧 / 𝑥]𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
12 | 4, 6, 11 | 3bitr3i 199 | 1 ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: sbrim 1830 sblim 1831 sbbi 1833 moimv 1966 nfraldya 2358 sbcimg 2804 zfregfr 4298 tfi 4305 peano2 4318 |
Copyright terms: Public domain | W3C validator |