![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alimi | GIF version |
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
alimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alimi | ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-5 1336 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | |
2 | alimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1340 | 1 ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 |
This theorem was proved from axioms: ax-mp 7 ax-5 1336 ax-gen 1338 |
This theorem is referenced by: 2alimi 1345 al2imi 1347 alrimih 1358 hbal 1366 19.26 1370 19.33 1373 hbequid 1406 equidqe 1425 hbim 1437 hbor 1438 nford 1459 nfand 1460 nfalt 1470 19.21ht 1473 exbi 1495 19.29 1511 19.25 1517 alexim 1536 alexnim 1539 19.9hd 1552 19.32r 1570 ax10 1605 spimh 1625 equvini 1641 nfexd 1644 stdpc4 1658 ax10oe 1678 sbcof2 1691 sb4bor 1716 nfsb2or 1718 spsbim 1724 ax16i 1738 sbi2v 1772 nfsbt 1850 nfsbd 1851 sbalyz 1875 hbsb4t 1889 dvelimor 1894 sbal2 1898 mo2n 1928 eumo0 1931 mor 1942 bm1.1 2025 alral 2367 rgen2a 2375 ralimi2 2381 rexim 2413 r19.32r 2457 ceqsalt 2580 spcgft 2630 spcegft 2632 spc2gv 2643 spc3gv 2645 rspct 2649 elabgt 2684 reu6 2730 sbciegft 2793 csbnestgf 2898 rabss2 3023 rabxmdc 3249 undif4 3284 ssdif0im 3286 inssdif0im 3291 ssundifim 3306 ralf0 3324 ralm 3325 intmin4 3643 dfiin2g 3690 invdisj 3759 trint 3869 a9evsep 3879 axnul 3882 csbexga 3885 ordunisuc2r 4240 tfi 4305 peano5 4321 ssrelrel 4440 issref 4707 iotanul 4882 iota4 4885 dffun5r 4914 fv3 5197 mptfvex 5256 ssoprab2 5561 mpt2fvex 5829 bj-nfalt 9904 elabgft1 9917 bj-rspgt 9925 bj-axemptylem 10012 bj-indind 10056 peano5setOLD 10065 setindis 10092 bdsetindis 10094 bj-inf2vnlem1 10095 bj-inf2vn 10099 bj-inf2vn2 10100 |
Copyright terms: Public domain | W3C validator |