ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mor GIF version

Theorem mor 1942
Description: Converse of mo23 1941 with an additional 𝑥𝜑 condition. (Contributed by Jim Kingdon, 25-Jun-2018.)
Hypothesis
Ref Expression
mor.1 𝑦𝜑
Assertion
Ref Expression
mor (∃𝑥𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mor
StepHypRef Expression
1 mor.1 . . 3 𝑦𝜑
21sb8e 1737 . 2 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
3 impexp 250 . . . . 5 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (𝜑 → ([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
4 bi2.04 237 . . . . 5 ((𝜑 → ([𝑦 / 𝑥]𝜑𝑥 = 𝑦)) ↔ ([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)))
53, 4bitri 173 . . . 4 (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)))
652albii 1360 . . 3 (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)))
7 nfs1v 1815 . . . . . 6 𝑥[𝑦 / 𝑥]𝜑
87nfri 1412 . . . . 5 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
98eximi 1491 . . . 4 (∃𝑦[𝑦 / 𝑥]𝜑 → ∃𝑦𝑥[𝑦 / 𝑥]𝜑)
10 alim 1346 . . . . . . 7 (∀𝑥([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)) → (∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)))
1110alimi 1344 . . . . . 6 (∀𝑦𝑥([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)) → ∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)))
1211a7s 1343 . . . . 5 (∀𝑥𝑦([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)) → ∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)))
13 exim 1490 . . . . 5 (∀𝑦(∀𝑥[𝑦 / 𝑥]𝜑 → ∀𝑥(𝜑𝑥 = 𝑦)) → (∃𝑦𝑥[𝑦 / 𝑥]𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
1412, 13syl 14 . . . 4 (∀𝑥𝑦([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)) → (∃𝑦𝑥[𝑦 / 𝑥]𝜑 → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
159, 14syl5com 26 . . 3 (∃𝑦[𝑦 / 𝑥]𝜑 → (∀𝑥𝑦([𝑦 / 𝑥]𝜑 → (𝜑𝑥 = 𝑦)) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
166, 15syl5bi 141 . 2 (∃𝑦[𝑦 / 𝑥]𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
172, 16sylbi 114 1 (∃𝑥𝜑 → (∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wal 1241  wnf 1349  wex 1381  [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-11 1397  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by:  modc  1943
  Copyright terms: Public domain W3C validator