ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  a7s GIF version

Theorem a7s 1343
Description: Swap quantifiers in an antecedent. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
a7s.1 (∀𝑥𝑦𝜑𝜓)
Assertion
Ref Expression
a7s (∀𝑦𝑥𝜑𝜓)

Proof of Theorem a7s
StepHypRef Expression
1 ax-7 1337 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
2 a7s.1 . 2 (∀𝑥𝑦𝜑𝜓)
31, 2syl 14 1 (∀𝑦𝑥𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-7 1337
This theorem is referenced by:  cbv2h  1634  hbsb4t  1889  mor  1942
  Copyright terms: Public domain W3C validator