Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  invdisj GIF version

Theorem invdisj 3759
 Description: If there is a function 𝐶(𝑦) such that 𝐶(𝑦) = 𝑥 for all 𝑦 ∈ 𝐵(𝑥), then the sets 𝐵(𝑥) for distinct 𝑥 ∈ 𝐴 are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.)
Assertion
Ref Expression
invdisj (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥Disj 𝑥𝐴 𝐵)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)

Proof of Theorem invdisj
StepHypRef Expression
1 nfra2xy 2364 . . 3 𝑦𝑥𝐴𝑦𝐵 𝐶 = 𝑥
2 df-ral 2311 . . . . 5 (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝐶 = 𝑥))
3 rsp 2369 . . . . . . . . 9 (∀𝑦𝐵 𝐶 = 𝑥 → (𝑦𝐵𝐶 = 𝑥))
4 eqcom 2042 . . . . . . . . 9 (𝐶 = 𝑥𝑥 = 𝐶)
53, 4syl6ib 150 . . . . . . . 8 (∀𝑦𝐵 𝐶 = 𝑥 → (𝑦𝐵𝑥 = 𝐶))
65imim2i 12 . . . . . . 7 ((𝑥𝐴 → ∀𝑦𝐵 𝐶 = 𝑥) → (𝑥𝐴 → (𝑦𝐵𝑥 = 𝐶)))
76impd 242 . . . . . 6 ((𝑥𝐴 → ∀𝑦𝐵 𝐶 = 𝑥) → ((𝑥𝐴𝑦𝐵) → 𝑥 = 𝐶))
87alimi 1344 . . . . 5 (∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝐶 = 𝑥) → ∀𝑥((𝑥𝐴𝑦𝐵) → 𝑥 = 𝐶))
92, 8sylbi 114 . . . 4 (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥 → ∀𝑥((𝑥𝐴𝑦𝐵) → 𝑥 = 𝐶))
10 mo2icl 2720 . . . 4 (∀𝑥((𝑥𝐴𝑦𝐵) → 𝑥 = 𝐶) → ∃*𝑥(𝑥𝐴𝑦𝐵))
119, 10syl 14 . . 3 (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥 → ∃*𝑥(𝑥𝐴𝑦𝐵))
121, 11alrimi 1415 . 2 (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥 → ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐵))
13 dfdisj2 3747 . 2 (Disj 𝑥𝐴 𝐵 ↔ ∀𝑦∃*𝑥(𝑥𝐴𝑦𝐵))
1412, 13sylibr 137 1 (∀𝑥𝐴𝑦𝐵 𝐶 = 𝑥Disj 𝑥𝐴 𝐵)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97  ∀wal 1241   = wceq 1243   ∈ wcel 1393  ∃*wmo 1901  ∀wral 2306  Disj wdisj 3745 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rmo 2314  df-v 2559  df-disj 3746 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator