Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-axemptylem | GIF version |
Description: Lemma for bj-axempty 10013 and bj-axempty2 10014. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 3883 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-axemptylem | ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdfal 9953 | . . 3 ⊢ BOUNDED ⊥ | |
2 | 1 | bdsep1 10005 | . 2 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) |
3 | bi1 111 | . . . 4 ⊢ ((𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → (𝑦 ∈ 𝑥 → (𝑦 ∈ 𝑧 ∧ ⊥))) | |
4 | falimd 1258 | . . . 4 ⊢ ((𝑦 ∈ 𝑧 ∧ ⊥) → ⊥) | |
5 | 3, 4 | syl6 29 | . . 3 ⊢ ((𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → (𝑦 ∈ 𝑥 → ⊥)) |
6 | 5 | alimi 1344 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝑥 ↔ (𝑦 ∈ 𝑧 ∧ ⊥)) → ∀𝑦(𝑦 ∈ 𝑥 → ⊥)) |
7 | 2, 6 | eximii 1493 | 1 ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ↔ wb 98 ∀wal 1241 ⊥wfal 1248 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 ax-bd0 9933 ax-bdim 9934 ax-bdn 9937 ax-bdeq 9940 ax-bdsep 10004 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-fal 1249 |
This theorem is referenced by: bj-axempty 10013 bj-axempty2 10014 |
Copyright terms: Public domain | W3C validator |