![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralm | GIF version |
Description: Inhabited classes and restricted quantification. (Contributed by Jim Kingdon, 6-Aug-2018.) |
Ref | Expression |
---|---|
ralm | ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2311 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | 1 | imbi2i 215 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑))) |
3 | 19.38 1566 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑))) | |
4 | 2, 3 | sylbi 114 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑))) |
5 | pm2.43 47 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) → (𝑥 ∈ 𝐴 → 𝜑)) | |
6 | 5 | alimi 1344 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐴 → 𝜑)) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
7 | 4, 6 | syl 14 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) |
8 | 7, 1 | sylibr 137 | . 2 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) → ∀𝑥 ∈ 𝐴 𝜑) |
9 | ax-1 5 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑)) | |
10 | 8, 9 | impbii 117 | 1 ⊢ ((∃𝑥 𝑥 ∈ 𝐴 → ∀𝑥 ∈ 𝐴 𝜑) ↔ ∀𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∀wal 1241 ∃wex 1381 ∈ wcel 1393 ∀wral 2306 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-ral 2311 |
This theorem is referenced by: raaan 3327 |
Copyright terms: Public domain | W3C validator |