Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eumo0 | GIF version |
Description: Existential uniqueness implies "at most one." (Contributed by NM, 8-Jul-1994.) |
Ref | Expression |
---|---|
eumo0.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
Ref | Expression |
---|---|
eumo0 | ⊢ (∃!𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eumo0.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | 1 | euf 1905 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦)) |
3 | bi1 111 | . . . 4 ⊢ ((𝜑 ↔ 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦)) | |
4 | 3 | alimi 1344 | . . 3 ⊢ (∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦)) |
5 | 4 | eximi 1491 | . 2 ⊢ (∃𝑦∀𝑥(𝜑 ↔ 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
6 | 2, 5 | sylbi 114 | 1 ⊢ (∃!𝑥𝜑 → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∀wal 1241 ∃wex 1381 ∃!weu 1900 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-eu 1903 |
This theorem is referenced by: eu2 1944 eu3h 1945 |
Copyright terms: Public domain | W3C validator |