Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.33 | GIF version |
Description: Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
19.33 | ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 633 | . . 3 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
2 | 1 | alimi 1344 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝜑 ∨ 𝜓)) |
3 | olc 632 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
4 | 3 | alimi 1344 | . 2 ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 ∨ 𝜓)) |
5 | 2, 4 | jaoi 636 | 1 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 629 ∀wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-gen 1338 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 19.33b2 1520 |
Copyright terms: Public domain | W3C validator |