ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.33 Structured version   GIF version

Theorem 19.33 1370
Description: Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.33 ((xφ xψ) → x(φ ψ))

Proof of Theorem 19.33
StepHypRef Expression
1 orc 632 . . 3 (φ → (φ ψ))
21alimi 1341 . 2 (xφx(φ ψ))
3 olc 631 . . 3 (ψ → (φ ψ))
43alimi 1341 . 2 (xψx(φ ψ))
52, 4jaoi 635 1 ((xφ xψ) → x(φ ψ))
Colors of variables: wff set class
Syntax hints:  wi 4   wo 628  wal 1240
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-gen 1335
This theorem depends on definitions:  df-bi 110
This theorem is referenced by:  19.33b2  1517
  Copyright terms: Public domain W3C validator