ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfsbt GIF version

Theorem nfsbt 1850
Description: Closed form of nfsb 1822. (Contributed by Jim Kingdon, 9-May-2018.)
Assertion
Ref Expression
nfsbt (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem nfsbt
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ax-17 1419 . 2 (∀𝑥𝑧𝜑 → ∀𝑤𝑥𝑧𝜑)
2 nfsbxyt 1819 . . . . 5 (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑤 / 𝑥]𝜑)
32alimi 1344 . . . 4 (∀𝑤𝑥𝑧𝜑 → ∀𝑤𝑧[𝑤 / 𝑥]𝜑)
4 nfsbxyt 1819 . . . 4 (∀𝑤𝑧[𝑤 / 𝑥]𝜑 → Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑)
53, 4syl 14 . . 3 (∀𝑤𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑)
6 nfv 1421 . . . . 5 𝑤𝜑
76sbco2 1839 . . . 4 ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)
87nfbii 1362 . . 3 (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑)
95, 8sylib 127 . 2 (∀𝑤𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
101, 9syl 14 1 (∀𝑥𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241  wnf 1349  [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by:  nfsbd  1851  setindft  10090
  Copyright terms: Public domain W3C validator