Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfsbt | GIF version |
Description: Closed form of nfsb 1822. (Contributed by Jim Kingdon, 9-May-2018.) |
Ref | Expression |
---|---|
nfsbt | ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-17 1419 | . 2 ⊢ (∀𝑥Ⅎ𝑧𝜑 → ∀𝑤∀𝑥Ⅎ𝑧𝜑) | |
2 | nfsbxyt 1819 | . . . . 5 ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑤 / 𝑥]𝜑) | |
3 | 2 | alimi 1344 | . . . 4 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → ∀𝑤Ⅎ𝑧[𝑤 / 𝑥]𝜑) |
4 | nfsbxyt 1819 | . . . 4 ⊢ (∀𝑤Ⅎ𝑧[𝑤 / 𝑥]𝜑 → Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑) |
6 | nfv 1421 | . . . . 5 ⊢ Ⅎ𝑤𝜑 | |
7 | 6 | sbco2 1839 | . . . 4 ⊢ ([𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
8 | 7 | nfbii 1362 | . . 3 ⊢ (Ⅎ𝑧[𝑦 / 𝑤][𝑤 / 𝑥]𝜑 ↔ Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
9 | 5, 8 | sylib 127 | . 2 ⊢ (∀𝑤∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
10 | 1, 9 | syl 14 | 1 ⊢ (∀𝑥Ⅎ𝑧𝜑 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 Ⅎwnf 1349 [wsb 1645 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 |
This theorem is referenced by: nfsbd 1851 setindft 10090 |
Copyright terms: Public domain | W3C validator |