Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfand Structured version   GIF version

Theorem nfand 1457
 Description: If in a context x is not free in ψ and χ, it is not free in (ψ ∧ χ). (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfand.1 (φ → Ⅎxψ)
nfand.2 (φ → Ⅎxχ)
Assertion
Ref Expression
nfand (φ → Ⅎx(ψ χ))

Proof of Theorem nfand
StepHypRef Expression
1 nfand.1 . . . 4 (φ → Ⅎxψ)
2 nfand.2 . . . 4 (φ → Ⅎxχ)
31, 2jca 290 . . 3 (φ → (Ⅎxψ xχ))
4 df-nf 1347 . . . . . 6 (Ⅎxψx(ψxψ))
5 df-nf 1347 . . . . . 6 (Ⅎxχx(χxχ))
64, 5anbi12i 433 . . . . 5 ((Ⅎxψ xχ) ↔ (x(ψxψ) x(χxχ)))
7 19.26 1367 . . . . 5 (x((ψxψ) (χxχ)) ↔ (x(ψxψ) x(χxχ)))
86, 7bitr4i 176 . . . 4 ((Ⅎxψ xχ) ↔ x((ψxψ) (χxχ)))
9 prth 326 . . . . . 6 (((ψxψ) (χxχ)) → ((ψ χ) → (xψ xχ)))
10 19.26 1367 . . . . . 6 (x(ψ χ) ↔ (xψ xχ))
119, 10syl6ibr 151 . . . . 5 (((ψxψ) (χxχ)) → ((ψ χ) → x(ψ χ)))
1211alimi 1341 . . . 4 (x((ψxψ) (χxχ)) → x((ψ χ) → x(ψ χ)))
138, 12sylbi 114 . . 3 ((Ⅎxψ xχ) → x((ψ χ) → x(ψ χ)))
143, 13syl 14 . 2 (φx((ψ χ) → x(ψ χ)))
15 df-nf 1347 . 2 (Ⅎx(ψ χ) ↔ x((ψ χ) → x(ψ χ)))
1614, 15sylibr 137 1 (φ → Ⅎx(ψ χ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97  ∀wal 1240  Ⅎwnf 1346 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335 This theorem depends on definitions:  df-bi 110  df-nf 1347 This theorem is referenced by:  nf3and  1458  nfbid  1477  nfsbxy  1815  nfsbxyt  1816  nfeld  2190  nfrexdxy  2351  nfreudxy  2477  nfifd  3349  nfriotadxy  5419  bdsepnft  9321
 Copyright terms: Public domain W3C validator