 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  prth GIF version

Theorem prth 326
 Description: Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it 'praeclarum theorema' (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Assertion
Ref Expression
prth (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))

Proof of Theorem prth
StepHypRef Expression
1 simpl 102 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜑𝜓))
2 simpr 103 . 2 (((𝜑𝜓) ∧ (𝜒𝜃)) → (𝜒𝜃))
31, 2anim12d 318 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → ((𝜑𝜒) → (𝜓𝜃)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  nfand  1460  equsexd  1617  mo23  1941  euind  2728  reuind  2744  reuss2  3217  opelopabt  3999  reusv3i  4191
 Copyright terms: Public domain W3C validator