ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.33 Structured version   GIF version

Theorem pm3.33 327
Description: Theorem *3.33 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm3.33 (((φψ) (ψχ)) → (φχ))

Proof of Theorem pm3.33
StepHypRef Expression
1 imim1 70 . 2 ((φψ) → ((ψχ) → (φχ)))
21imp 115 1 (((φψ) (ψχ)) → (φχ))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100
This theorem is referenced by:  alsyl  1523  sbequilem  1716
  Copyright terms: Public domain W3C validator