Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  elabgft1 Structured version   GIF version

Theorem elabgft1 7024
 Description: One implication of elabgf 2662, in closed form. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
elabgf1.nf1 xA
elabgf1.nf2 xψ
Assertion
Ref Expression
elabgft1 (x(x = A → (φψ)) → (A {xφ} → ψ))

Proof of Theorem elabgft1
StepHypRef Expression
1 bi1 111 . . . . . 6 ((A {xφ} ↔ φ) → (A {xφ} → φ))
2 imim2 49 . . . . . 6 ((φψ) → ((A {xφ} → φ) → (A {xφ} → ψ)))
31, 2syl5 28 . . . . 5 ((φψ) → ((A {xφ} ↔ φ) → (A {xφ} → ψ)))
43imim2i 12 . . . 4 ((x = A → (φψ)) → (x = A → ((A {xφ} ↔ φ) → (A {xφ} → ψ))))
54alimi 1324 . . 3 (x(x = A → (φψ)) → x(x = A → ((A {xφ} ↔ φ) → (A {xφ} → ψ))))
6 elabgf1.nf1 . . . 4 xA
7 nfab1 2162 . . . . . 6 x{xφ}
86, 7nfel 2168 . . . . 5 x A {xφ}
9 elabgf1.nf2 . . . . 5 xψ
108, 9nfim 1446 . . . 4 x(A {xφ} → ψ)
11 elabgf0 7023 . . . 4 (x = A → (A {xφ} ↔ φ))
126, 10, 11bj-vtoclgft 7021 . . 3 (x(x = A → ((A {xφ} ↔ φ) → (A {xφ} → ψ))) → (A {xφ} → (A {xφ} → ψ)))
135, 12syl 14 . 2 (x(x = A → (φψ)) → (A {xφ} → (A {xφ} → ψ)))
1413pm2.43d 44 1 (x(x = A → (φψ)) → (A {xφ} → ψ))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98  ∀wal 1226   = wceq 1228  Ⅎwnf 1329   ∈ wcel 1374  {cab 2008  Ⅎwnfc 2147 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004 This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-v 2537 This theorem is referenced by:  elabgf1  7025
 Copyright terms: Public domain W3C validator