Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.25 | GIF version |
Description: Theorem 19.25 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.) |
Ref | Expression |
---|---|
19.25 | ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) → (∃𝑦∀𝑥𝜑 → ∃𝑦∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.35-1 1515 | . . 3 ⊢ (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∃𝑥𝜓)) | |
2 | 1 | alimi 1344 | . 2 ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) → ∀𝑦(∀𝑥𝜑 → ∃𝑥𝜓)) |
3 | exim 1490 | . 2 ⊢ (∀𝑦(∀𝑥𝜑 → ∃𝑥𝜓) → (∃𝑦∀𝑥𝜑 → ∃𝑦∃𝑥𝜓)) | |
4 | 2, 3 | syl 14 | 1 ⊢ (∀𝑦∃𝑥(𝜑 → 𝜓) → (∃𝑦∀𝑥𝜑 → ∃𝑦∃𝑥𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 ∃wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |