ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sb4bor GIF version

Theorem sb4bor 1716
Description: Simplified definition of substitution when variables are distinct, expressed via disjunction. (Contributed by Jim Kingdon, 18-Mar-2018.)
Assertion
Ref Expression
sb4bor (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))

Proof of Theorem sb4bor
StepHypRef Expression
1 sb4or 1714 . 2 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)))
2 sb2 1650 . . . . 5 (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)
3 df-bi 110 . . . . . 6 ((([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)) → (([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)) ∧ (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑))) ∧ ((([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)) ∧ (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))))
43simpri 106 . . . . 5 ((([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)) ∧ (∀𝑥(𝑥 = 𝑦𝜑) → [𝑦 / 𝑥]𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
52, 4mpan2 401 . . . 4 (([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)) → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
65alimi 1344 . . 3 (∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑)) → ∀𝑥([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
76orim2i 678 . 2 ((∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))) → (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))))
81, 7ax-mp 7 1 (∀𝑥 𝑥 = 𝑦 ∨ ∀𝑥([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wo 629  wal 1241  [wsb 1645
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator