ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  intmin4 GIF version

Theorem intmin4 3643
Description: Elimination of a conjunct in a class intersection. (Contributed by NM, 31-Jul-2006.)
Assertion
Ref Expression
intmin4 (𝐴 {𝑥𝜑} → {𝑥 ∣ (𝐴𝑥𝜑)} = {𝑥𝜑})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem intmin4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssintab 3632 . . . 4 (𝐴 {𝑥𝜑} ↔ ∀𝑥(𝜑𝐴𝑥))
2 simpr 103 . . . . . . . 8 ((𝐴𝑥𝜑) → 𝜑)
3 ancr 304 . . . . . . . 8 ((𝜑𝐴𝑥) → (𝜑 → (𝐴𝑥𝜑)))
42, 3impbid2 131 . . . . . . 7 ((𝜑𝐴𝑥) → ((𝐴𝑥𝜑) ↔ 𝜑))
54imbi1d 220 . . . . . 6 ((𝜑𝐴𝑥) → (((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)))
65alimi 1344 . . . . 5 (∀𝑥(𝜑𝐴𝑥) → ∀𝑥(((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)))
7 albi 1357 . . . . 5 (∀𝑥(((𝐴𝑥𝜑) → 𝑦𝑥) ↔ (𝜑𝑦𝑥)) → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
86, 7syl 14 . . . 4 (∀𝑥(𝜑𝐴𝑥) → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
91, 8sylbi 114 . . 3 (𝐴 {𝑥𝜑} → (∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥) ↔ ∀𝑥(𝜑𝑦𝑥)))
10 vex 2560 . . . 4 𝑦 ∈ V
1110elintab 3626 . . 3 (𝑦 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ ∀𝑥((𝐴𝑥𝜑) → 𝑦𝑥))
1210elintab 3626 . . 3 (𝑦 {𝑥𝜑} ↔ ∀𝑥(𝜑𝑦𝑥))
139, 11, 123bitr4g 212 . 2 (𝐴 {𝑥𝜑} → (𝑦 {𝑥 ∣ (𝐴𝑥𝜑)} ↔ 𝑦 {𝑥𝜑}))
1413eqrdv 2038 1 (𝐴 {𝑥𝜑} → {𝑥 ∣ (𝐴𝑥𝜑)} = {𝑥𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 97  wb 98  wal 1241   = wceq 1243  wcel 1393  {cab 2026  wss 2917   cint 3615
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-int 3616
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator