Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > r19.32r | GIF version |
Description: One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence. (Contributed by Jim Kingdon, 19-Aug-2018.) |
Ref | Expression |
---|---|
r19.32r.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
r19.32r | ⊢ ((𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.32r.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | orc 633 | . . . . 5 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
3 | 2 | a1d 22 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
4 | 1, 3 | alrimi 1415 | . . 3 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
5 | df-ral 2311 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜓)) | |
6 | olc 632 | . . . . . 6 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
7 | 6 | imim2i 12 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝜓) → (𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
8 | 7 | alimi 1344 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜓) → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
9 | 5, 8 | sylbi 114 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
10 | 4, 9 | jaoi 636 | . 2 ⊢ ((𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) |
11 | df-ral 2311 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜑 ∨ 𝜓))) | |
12 | 10, 11 | sylibr 137 | 1 ⊢ ((𝜑 ∨ ∀𝑥 ∈ 𝐴 𝜓) → ∀𝑥 ∈ 𝐴 (𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∨ wo 629 ∀wal 1241 Ⅎwnf 1349 ∈ wcel 1393 ∀wral 2306 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-gen 1338 ax-4 1400 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-ral 2311 |
This theorem is referenced by: r19.32vr 2458 |
Copyright terms: Public domain | W3C validator |