Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > spimh | GIF version |
Description: Specialization, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. The spim 1626 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 8-May-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
spimh.1 | ⊢ (𝜓 → ∀𝑥𝜓) |
spimh.2 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
spimh | ⊢ (∀𝑥𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spimh.2 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
2 | spimh.1 | . . . 4 ⊢ (𝜓 → ∀𝑥𝜓) | |
3 | 1, 2 | syl6com 31 | . . 3 ⊢ (𝜑 → (𝑥 = 𝑦 → ∀𝑥𝜓)) |
4 | 3 | alimi 1344 | . 2 ⊢ (∀𝑥𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓)) |
5 | ax9o 1588 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜓) → 𝜓) | |
6 | 4, 5 | syl 14 | 1 ⊢ (∀𝑥𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-4 1400 ax-i9 1423 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: spim 1626 |
Copyright terms: Public domain | W3C validator |