Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.21ht GIF version

Theorem 19.21ht 1473
 Description: Closed form of Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 27-May-1997.) (New usage is discouraged.)
Assertion
Ref Expression
19.21ht (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))

Proof of Theorem 19.21ht
StepHypRef Expression
1 alim 1346 . . . . 5 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
21imim2d 48 . . . 4 (∀𝑥(𝜑𝜓) → ((𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜓)))
32com12 27 . . 3 ((𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
43sps 1430 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
5 hba1 1433 . . . 4 (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑥(𝜑 → ∀𝑥𝜑))
6 ax-4 1400 . . . 4 (∀𝑥(𝜑 → ∀𝑥𝜑) → (𝜑 → ∀𝑥𝜑))
7 hba1 1433 . . . . 5 (∀𝑥𝜓 → ∀𝑥𝑥𝜓)
87a1i 9 . . . 4 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥𝜓 → ∀𝑥𝑥𝜓))
95, 6, 8hbimd 1465 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → ∀𝑥𝜓)))
10 ax-4 1400 . . . . 5 (∀𝑥𝜓𝜓)
1110imim2i 12 . . . 4 ((𝜑 → ∀𝑥𝜓) → (𝜑𝜓))
1211alimi 1344 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
139, 12syl6 29 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) → ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓)))
144, 13impbid 120 1 (∀𝑥(𝜑 → ∀𝑥𝜑) → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98  ∀wal 1241 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-gen 1338  ax-4 1400  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110 This theorem is referenced by:  19.21t  1474  sbal2  1898
 Copyright terms: Public domain W3C validator