Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfia1 | GIF version |
Description: Lemma 23 of [Monk2] p. 114. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfia1 | ⊢ Ⅎ𝑥(∀𝑥𝜑 → ∀𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfa1 1434 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
2 | nfa1 1434 | . 2 ⊢ Ⅎ𝑥∀𝑥𝜓 | |
3 | 1, 2 | nfim 1464 | 1 ⊢ Ⅎ𝑥(∀𝑥𝜑 → ∀𝑥𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1241 Ⅎwnf 1349 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-ial 1427 ax-i5r 1428 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |