Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-rspgt Structured version   GIF version

Theorem bj-rspgt 7032
 Description: Restricted specialization, generalized. Weakens a hypothesis of rspccv 2630 and seems to have a shorter proof. (Contributed by BJ, 21-Nov-2019.)
Hypotheses
Ref Expression
bj-rspg.nfa xA
bj-rspg.nfb xB
bj-rspg.nf2 xψ
Assertion
Ref Expression
bj-rspgt (x(x = A → (φψ)) → (x B φ → (A Bψ)))

Proof of Theorem bj-rspgt
StepHypRef Expression
1 eleq1 2082 . . . . . . . . 9 (x = A → (x BA B))
21imbi1d 220 . . . . . . . 8 (x = A → ((x B → (x B φφ)) ↔ (A B → (x B φφ))))
32biimpd 132 . . . . . . 7 (x = A → ((x B → (x B φφ)) → (A B → (x B φφ))))
4 imim2 49 . . . . . . . 8 ((φψ) → ((x B φφ) → (x B φψ)))
54imim2d 48 . . . . . . 7 ((φψ) → ((A B → (x B φφ)) → (A B → (x B φψ))))
63, 5syl9 66 . . . . . 6 (x = A → ((φψ) → ((x B → (x B φφ)) → (A B → (x B φψ)))))
76a2i 11 . . . . 5 ((x = A → (φψ)) → (x = A → ((x B → (x B φφ)) → (A B → (x B φψ)))))
87alimi 1324 . . . 4 (x(x = A → (φψ)) → x(x = A → ((x B → (x B φφ)) → (A B → (x B φψ)))))
9 bj-rspg.nfa . . . . 5 xA
10 bj-rspg.nfb . . . . . . 7 xB
119, 10nfel 2168 . . . . . 6 x A B
12 nfra1 2333 . . . . . . 7 xx B φ
13 bj-rspg.nf2 . . . . . . 7 xψ
1412, 13nfim 1446 . . . . . 6 x(x B φψ)
1511, 14nfim 1446 . . . . 5 x(A B → (x B φψ))
16 rsp 2347 . . . . . . 7 (x B φ → (x Bφ))
1716a1i 9 . . . . . 6 (x = A → (x B φ → (x Bφ)))
1817com23 72 . . . . 5 (x = A → (x B → (x B φφ)))
199, 15, 18bj-vtoclgft 7021 . . . 4 (x(x = A → ((x B → (x B φφ)) → (A B → (x B φψ)))) → (A B → (A B → (x B φψ))))
208, 19syl 14 . . 3 (x(x = A → (φψ)) → (A B → (A B → (x B φψ))))
2120pm2.43d 44 . 2 (x(x = A → (φψ)) → (A B → (x B φψ)))
2221com23 72 1 (x(x = A → (φψ)) → (x B φ → (A Bψ)))
 Colors of variables: wff set class Syntax hints:   → wi 4  ∀wal 1226   = wceq 1228  Ⅎwnf 1329   ∈ wcel 1374  Ⅎwnfc 2147  ∀wral 2284 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 617  ax-5 1316  ax-7 1317  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-8 1376  ax-10 1377  ax-11 1378  ax-i12 1379  ax-bnd 1380  ax-4 1381  ax-17 1400  ax-i9 1404  ax-ial 1409  ax-i5r 1410  ax-ext 2004 This theorem depends on definitions:  df-bi 110  df-tru 1231  df-nf 1330  df-sb 1628  df-clab 2009  df-cleq 2015  df-clel 2018  df-nfc 2149  df-ral 2289  df-v 2537 This theorem is referenced by:  bj-rspg  7033
 Copyright terms: Public domain W3C validator