ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  trint GIF version

Theorem trint 3869
Description: The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. (Contributed by Scott Fenton, 25-Feb-2011.)
Assertion
Ref Expression
trint (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem trint
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dftr3 3858 . . . . . 6 (Tr 𝑥 ↔ ∀𝑦𝑥 𝑦𝑥)
21ralbii 2330 . . . . 5 (∀𝑥𝐴 Tr 𝑥 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝑥)
32biimpi 113 . . . 4 (∀𝑥𝐴 Tr 𝑥 → ∀𝑥𝐴𝑦𝑥 𝑦𝑥)
4 df-ral 2311 . . . . . 6 (∀𝑦𝑥 𝑦𝑥 ↔ ∀𝑦(𝑦𝑥𝑦𝑥))
54ralbii 2330 . . . . 5 (∀𝑥𝐴𝑦𝑥 𝑦𝑥 ↔ ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝑥))
6 ralcom4 2576 . . . . 5 (∀𝑥𝐴𝑦(𝑦𝑥𝑦𝑥) ↔ ∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥))
75, 6bitri 173 . . . 4 (∀𝑥𝐴𝑦𝑥 𝑦𝑥 ↔ ∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥))
83, 7sylib 127 . . 3 (∀𝑥𝐴 Tr 𝑥 → ∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥))
9 ralim 2380 . . . 4 (∀𝑥𝐴 (𝑦𝑥𝑦𝑥) → (∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
109alimi 1344 . . 3 (∀𝑦𝑥𝐴 (𝑦𝑥𝑦𝑥) → ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
118, 10syl 14 . 2 (∀𝑥𝐴 Tr 𝑥 → ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
12 dftr3 3858 . . 3 (Tr 𝐴 ↔ ∀𝑦 𝐴𝑦 𝐴)
13 df-ral 2311 . . . 4 (∀𝑦 𝐴𝑦 𝐴 ↔ ∀𝑦(𝑦 𝐴𝑦 𝐴))
14 vex 2560 . . . . . . 7 𝑦 ∈ V
1514elint2 3622 . . . . . 6 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
16 ssint 3631 . . . . . 6 (𝑦 𝐴 ↔ ∀𝑥𝐴 𝑦𝑥)
1715, 16imbi12i 228 . . . . 5 ((𝑦 𝐴𝑦 𝐴) ↔ (∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
1817albii 1359 . . . 4 (∀𝑦(𝑦 𝐴𝑦 𝐴) ↔ ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
1913, 18bitri 173 . . 3 (∀𝑦 𝐴𝑦 𝐴 ↔ ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
2012, 19bitri 173 . 2 (Tr 𝐴 ↔ ∀𝑦(∀𝑥𝐴 𝑦𝑥 → ∀𝑥𝐴 𝑦𝑥))
2111, 20sylibr 137 1 (∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1241  wcel 1393  wral 2306  wss 2917   cint 3615  Tr wtr 3854
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-uni 3581  df-int 3616  df-tr 3855
This theorem is referenced by:  onintonm  4243
  Copyright terms: Public domain W3C validator