Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-tr | GIF version |
Description: Define the transitive class predicate. Definition of [Enderton] p. 71 extended to arbitrary classes. For alternate definitions, see dftr2 3856 (which is suggestive of the word "transitive"), dftr3 3858, dftr4 3859, and dftr5 3857. The term "complete" is used instead of "transitive" in Definition 3 of [Suppes] p. 130. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
df-tr | ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | 1 | wtr 3854 | . 2 wff Tr 𝐴 |
3 | 1 | cuni 3580 | . . 3 class ∪ 𝐴 |
4 | 3, 1 | wss 2917 | . 2 wff ∪ 𝐴 ⊆ 𝐴 |
5 | 2, 4 | wb 98 | 1 wff (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) |
Colors of variables: wff set class |
This definition is referenced by: dftr2 3856 dftr4 3859 treq 3860 trv 3866 pwtr 3955 unisuc 4150 unisucg 4151 orduniss 4162 |
Copyright terms: Public domain | W3C validator |