Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwtr GIF version

Theorem pwtr 3955
 Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.)
Assertion
Ref Expression
pwtr (Tr 𝐴 ↔ Tr 𝒫 𝐴)

Proof of Theorem pwtr
StepHypRef Expression
1 unipw 3953 . . 3 𝒫 𝐴 = 𝐴
21sseq1i 2969 . 2 ( 𝒫 𝐴 ⊆ 𝒫 𝐴𝐴 ⊆ 𝒫 𝐴)
3 df-tr 3855 . 2 (Tr 𝒫 𝐴 𝒫 𝐴 ⊆ 𝒫 𝐴)
4 dftr4 3859 . 2 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
52, 3, 43bitr4ri 202 1 (Tr 𝐴 ↔ Tr 𝒫 𝐴)
 Colors of variables: wff set class Syntax hints:   ↔ wb 98   ⊆ wss 2917  𝒫 cpw 3359  ∪ cuni 3580  Tr wtr 3854 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-uni 3581  df-tr 3855 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator