Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwtr | Unicode version |
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
pwtr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 3953 | . . 3 | |
2 | 1 | sseq1i 2969 | . 2 |
3 | df-tr 3855 | . 2 | |
4 | dftr4 3859 | . 2 | |
5 | 2, 3, 4 | 3bitr4ri 202 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 98 wss 2917 cpw 3359 cuni 3580 wtr 3854 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 |
This theorem depends on definitions: df-bi 110 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-v 2559 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-uni 3581 df-tr 3855 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |