ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unipw GIF version

Theorem unipw 3953
Description: A class equals the union of its power class. Exercise 6(a) of [Enderton] p. 38. (Contributed by NM, 14-Oct-1996.) (Proof shortened by Alan Sare, 28-Dec-2008.)
Assertion
Ref Expression
unipw 𝒫 𝐴 = 𝐴

Proof of Theorem unipw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3583 . . . 4 (𝑥 𝒫 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴))
2 elelpwi 3370 . . . . 5 ((𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
32exlimiv 1489 . . . 4 (∃𝑦(𝑥𝑦𝑦 ∈ 𝒫 𝐴) → 𝑥𝐴)
41, 3sylbi 114 . . 3 (𝑥 𝒫 𝐴𝑥𝐴)
5 vex 2560 . . . . 5 𝑥 ∈ V
65snid 3402 . . . 4 𝑥 ∈ {𝑥}
7 snelpwi 3948 . . . 4 (𝑥𝐴 → {𝑥} ∈ 𝒫 𝐴)
8 elunii 3585 . . . 4 ((𝑥 ∈ {𝑥} ∧ {𝑥} ∈ 𝒫 𝐴) → 𝑥 𝒫 𝐴)
96, 7, 8sylancr 393 . . 3 (𝑥𝐴𝑥 𝒫 𝐴)
104, 9impbii 117 . 2 (𝑥 𝒫 𝐴𝑥𝐴)
1110eqriv 2037 1 𝒫 𝐴 = 𝐴
Colors of variables: wff set class
Syntax hints:  wa 97   = wceq 1243  wex 1381  wcel 1393  𝒫 cpw 3359  {csn 3375   cuni 3580
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-uni 3581
This theorem is referenced by:  pwtr  3955  pwexb  4206  univ  4207  unixpss  4451
  Copyright terms: Public domain W3C validator