ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orduniss Structured version   GIF version

Theorem orduniss 4112
Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.)
Assertion
Ref Expression
orduniss (Ord A AA)

Proof of Theorem orduniss
StepHypRef Expression
1 ordtr 4064 . 2 (Ord A → Tr A)
2 df-tr 3829 . 2 (Tr A AA)
31, 2sylib 127 1 (Ord A AA)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 2894   cuni 3554  Tr wtr 3828  Ord word 4048
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99
This theorem depends on definitions:  df-bi 110  df-tr 3829  df-iord 4052
This theorem is referenced by:  ordunisuc2r  4189  limom  4263
  Copyright terms: Public domain W3C validator