![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > limom | GIF version |
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.) |
Ref | Expression |
---|---|
limom | ⊢ Lim ω |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 4329 | . 2 ⊢ Ord ω | |
2 | peano1 4317 | . 2 ⊢ ∅ ∈ ω | |
3 | vex 2560 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
4 | 3 | sucex 4225 | . . . . . . . 8 ⊢ suc 𝑥 ∈ V |
5 | 4 | isseti 2563 | . . . . . . 7 ⊢ ∃𝑧 𝑧 = suc 𝑥 |
6 | peano2 4318 | . . . . . . . . 9 ⊢ (𝑥 ∈ ω → suc 𝑥 ∈ ω) | |
7 | 3 | sucid 4154 | . . . . . . . . 9 ⊢ 𝑥 ∈ suc 𝑥 |
8 | 6, 7 | jctil 295 | . . . . . . . 8 ⊢ (𝑥 ∈ ω → (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω)) |
9 | eleq2 2101 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ 𝑧 ↔ 𝑥 ∈ suc 𝑥)) | |
10 | eleq1 2100 | . . . . . . . . 9 ⊢ (𝑧 = suc 𝑥 → (𝑧 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
11 | 9, 10 | anbi12d 442 | . . . . . . . 8 ⊢ (𝑧 = suc 𝑥 → ((𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω) ↔ (𝑥 ∈ suc 𝑥 ∧ suc 𝑥 ∈ ω))) |
12 | 8, 11 | syl5ibr 145 | . . . . . . 7 ⊢ (𝑧 = suc 𝑥 → (𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω))) |
13 | 5, 12 | eximii 1493 | . . . . . 6 ⊢ ∃𝑧(𝑥 ∈ ω → (𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
14 | 13 | 19.37aiv 1565 | . . . . 5 ⊢ (𝑥 ∈ ω → ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) |
15 | eluni 3583 | . . . . 5 ⊢ (𝑥 ∈ ∪ ω ↔ ∃𝑧(𝑥 ∈ 𝑧 ∧ 𝑧 ∈ ω)) | |
16 | 14, 15 | sylibr 137 | . . . 4 ⊢ (𝑥 ∈ ω → 𝑥 ∈ ∪ ω) |
17 | 16 | ssriv 2949 | . . 3 ⊢ ω ⊆ ∪ ω |
18 | orduniss 4162 | . . . 4 ⊢ (Ord ω → ∪ ω ⊆ ω) | |
19 | 1, 18 | ax-mp 7 | . . 3 ⊢ ∪ ω ⊆ ω |
20 | 17, 19 | eqssi 2961 | . 2 ⊢ ω = ∪ ω |
21 | dflim2 4107 | . 2 ⊢ (Lim ω ↔ (Ord ω ∧ ∅ ∈ ω ∧ ω = ∪ ω)) | |
22 | 1, 2, 20, 21 | mpbir3an 1086 | 1 ⊢ Lim ω |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 = wceq 1243 ∃wex 1381 ∈ wcel 1393 ⊆ wss 2917 ∅c0 3224 ∪ cuni 3580 Ord word 4099 Lim wlim 4101 suc csuc 4102 ωcom 4313 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-uni 3581 df-int 3616 df-tr 3855 df-iord 4103 df-ilim 4106 df-suc 4108 df-iom 4314 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |