ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limom Unicode version

Theorem limom 4336
Description: Omega is a limit ordinal. Theorem 2.8 of [BellMachover] p. 473. (Contributed by NM, 26-Mar-1995.) (Proof rewritten by Jim Kingdon, 5-Jan-2019.)
Assertion
Ref Expression
limom  |-  Lim  om

Proof of Theorem limom
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordom 4329 . 2  |-  Ord  om
2 peano1 4317 . 2  |-  (/)  e.  om
3 vex 2560 . . . . . . . . 9  |-  x  e. 
_V
43sucex 4225 . . . . . . . 8  |-  suc  x  e.  _V
54isseti 2563 . . . . . . 7  |-  E. z 
z  =  suc  x
6 peano2 4318 . . . . . . . . 9  |-  ( x  e.  om  ->  suc  x  e.  om )
73sucid 4154 . . . . . . . . 9  |-  x  e. 
suc  x
86, 7jctil 295 . . . . . . . 8  |-  ( x  e.  om  ->  (
x  e.  suc  x  /\  suc  x  e.  om ) )
9 eleq2 2101 . . . . . . . . 9  |-  ( z  =  suc  x  -> 
( x  e.  z  <-> 
x  e.  suc  x
) )
10 eleq1 2100 . . . . . . . . 9  |-  ( z  =  suc  x  -> 
( z  e.  om  <->  suc  x  e.  om )
)
119, 10anbi12d 442 . . . . . . . 8  |-  ( z  =  suc  x  -> 
( ( x  e.  z  /\  z  e. 
om )  <->  ( x  e.  suc  x  /\  suc  x  e.  om )
) )
128, 11syl5ibr 145 . . . . . . 7  |-  ( z  =  suc  x  -> 
( x  e.  om  ->  ( x  e.  z  /\  z  e.  om ) ) )
135, 12eximii 1493 . . . . . 6  |-  E. z
( x  e.  om  ->  ( x  e.  z  /\  z  e.  om ) )
141319.37aiv 1565 . . . . 5  |-  ( x  e.  om  ->  E. z
( x  e.  z  /\  z  e.  om ) )
15 eluni 3583 . . . . 5  |-  ( x  e.  U. om  <->  E. z
( x  e.  z  /\  z  e.  om ) )
1614, 15sylibr 137 . . . 4  |-  ( x  e.  om  ->  x  e.  U. om )
1716ssriv 2949 . . 3  |-  om  C_  U. om
18 orduniss 4162 . . . 4  |-  ( Ord 
om  ->  U. om  C_  om )
191, 18ax-mp 7 . . 3  |-  U. om  C_ 
om
2017, 19eqssi 2961 . 2  |-  om  =  U. om
21 dflim2 4107 . 2  |-  ( Lim 
om 
<->  ( Ord  om  /\  (/) 
e.  om  /\  om  =  U. om ) )
221, 2, 20, 21mpbir3an 1086 1  |-  Lim  om
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393    C_ wss 2917   (/)c0 3224   U.cuni 3580   Ord word 4099   Lim wlim 4101   suc csuc 4102   omcom 4313
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-uni 3581  df-int 3616  df-tr 3855  df-iord 4103  df-ilim 4106  df-suc 4108  df-iom 4314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator