Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isseti | GIF version |
Description: A way to say "𝐴 is a set" (inference rule). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
isseti.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
isseti | ⊢ ∃𝑥 𝑥 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isseti.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | isset 2561 | . 2 ⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | |
3 | 1, 2 | mpbi 133 | 1 ⊢ ∃𝑥 𝑥 = 𝐴 |
Colors of variables: wff set class |
Syntax hints: = wceq 1243 ∃wex 1381 ∈ wcel 1393 Vcvv 2557 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-sb 1646 df-clab 2027 df-cleq 2033 df-clel 2036 df-v 2559 |
This theorem is referenced by: rexcom4b 2579 ceqsex 2592 vtoclf 2607 vtocl2 2609 vtocl3 2610 vtoclef 2626 eqvinc 2667 euind 2728 opabm 4017 eusv2nf 4188 limom 4336 isarep2 4986 dfoprab2 5552 rnoprab 5587 dmaddpq 6477 dmmulpq 6478 bj-inf2vnlem1 10095 |
Copyright terms: Public domain | W3C validator |