![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > jctil | GIF version |
Description: Inference conjoining a theorem to left of consequent in an implication. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
jctil.1 | ⊢ (𝜑 → 𝜓) |
jctil.2 | ⊢ 𝜒 |
Ref | Expression |
---|---|
jctil | ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctil.2 | . . 3 ⊢ 𝜒 | |
2 | 1 | a1i 9 | . 2 ⊢ (𝜑 → 𝜒) |
3 | jctil.1 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | 2, 3 | jca 290 | 1 ⊢ (𝜑 → (𝜒 ∧ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia3 101 |
This theorem is referenced by: jctl 297 ddifnel 3075 unidif 3612 iunxdif2 3705 exss 3963 reg2exmidlema 4259 onpsssuc 4295 limom 4336 xpiindim 4473 relssres 4648 funco 4940 nfunsn 5207 fliftcnv 5435 fo1stresm 5788 fo2ndresm 5789 dftpos3 5877 tfri1d 5949 rdgtfr 5961 rdgruledefgg 5962 frectfr 5985 phplem2 6316 nqprrnd 6641 nqprxx 6644 ltexprlempr 6706 recexprlempr 6730 cauappcvgprlemcl 6751 caucvgprlemcl 6774 caucvgprprlemcl 6802 lemulge11 7832 nn0ge2m1nn 8242 frecfzennn 9203 |
Copyright terms: Public domain | W3C validator |