ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.37aiv Structured version   GIF version

Theorem 19.37aiv 1547
Description: Inference from Theorem 19.37 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
19.37aiv.1 x(φψ)
Assertion
Ref Expression
19.37aiv (φxψ)
Distinct variable group:   φ,x
Allowed substitution hint:   ψ(x)

Proof of Theorem 19.37aiv
StepHypRef Expression
1 19.37aiv.1 . 2 x(φψ)
2 nfv 1402 . . 3 xφ
3219.37-1 1546 . 2 (x(φψ) → (φxψ))
41, 3ax-mp 7 1 (φxψ)
Colors of variables: wff set class
Syntax hints:  wi 4  wex 1362
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1316  ax-gen 1318  ax-ie1 1363  ax-ie2 1364  ax-4 1381  ax-17 1400  ax-ial 1409
This theorem depends on definitions:  df-bi 110  df-nf 1330
This theorem is referenced by:  eqvinc  2644  limom  4263
  Copyright terms: Public domain W3C validator