Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  elint2 GIF version

Theorem elint2 3622
 Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.)
Hypothesis
Ref Expression
elint2.1 𝐴 ∈ V
Assertion
Ref Expression
elint2 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elint2
StepHypRef Expression
1 elint2.1 . . 3 𝐴 ∈ V
21elint 3621 . 2 (𝐴 𝐵 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
3 df-ral 2311 . 2 (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥(𝑥𝐵𝐴𝑥))
42, 3bitr4i 176 1 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 98  ∀wal 1241   ∈ wcel 1393  ∀wral 2306  Vcvv 2557  ∩ cint 3615 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-int 3616 This theorem is referenced by:  elintg  3623  ssint  3631  intssunim  3637  iinuniss  3737  trint  3869  trintssm  3870
 Copyright terms: Public domain W3C validator