ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemcalc Structured version   GIF version

Theorem prarloclemcalc 6484
Description: Some calculations for prarloc 6485. (Contributed by Jim Kingdon, 26-Oct-2019.)
Assertion
Ref Expression
prarloclemcalc (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → B <Q (A +Q 𝑃))

Proof of Theorem prarloclemcalc
StepHypRef Expression
1 simprll 489 . . . . 5 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → 𝑄 Q)
2 nqnq0a 6436 . . . . 5 ((𝑄 Q 𝑄 Q) → (𝑄 +Q 𝑄) = (𝑄 +Q0 𝑄))
31, 1, 2syl2anc 391 . . . 4 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (𝑄 +Q 𝑄) = (𝑄 +Q0 𝑄))
43oveq2d 5471 . . 3 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (A +Q0 (𝑄 +Q 𝑄)) = (A +Q0 (𝑄 +Q0 𝑄)))
5 simpll 481 . . . . 5 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)))
6 simprrl 491 . . . . . 6 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → 𝑋 Q)
7 simprrr 492 . . . . . . . 8 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → 𝑀 𝜔)
8 1pi 6299 . . . . . . . . . . 11 1𝑜 N
9 opelxpi 4319 . . . . . . . . . . 11 ((𝑀 𝜔 1𝑜 N) → ⟨𝑀, 1𝑜 (𝜔 × N))
108, 9mpan2 401 . . . . . . . . . 10 (𝑀 𝜔 → ⟨𝑀, 1𝑜 (𝜔 × N))
11 enq0ex 6421 . . . . . . . . . . 11 ~Q0 V
1211ecelqsi 6096 . . . . . . . . . 10 (⟨𝑀, 1𝑜 (𝜔 × N) → [⟨𝑀, 1𝑜⟩] ~Q0 ((𝜔 × N) / ~Q0 ))
1310, 12syl 14 . . . . . . . . 9 (𝑀 𝜔 → [⟨𝑀, 1𝑜⟩] ~Q0 ((𝜔 × N) / ~Q0 ))
14 df-nq0 6407 . . . . . . . . 9 Q0 = ((𝜔 × N) / ~Q0 )
1513, 14syl6eleqr 2128 . . . . . . . 8 (𝑀 𝜔 → [⟨𝑀, 1𝑜⟩] ~Q0 Q0)
167, 15syl 14 . . . . . . 7 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → [⟨𝑀, 1𝑜⟩] ~Q0 Q0)
17 nqnq0 6423 . . . . . . . 8 QQ0
1817, 1sseldi 2937 . . . . . . 7 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → 𝑄 Q0)
19 mulclnq0 6434 . . . . . . 7 (([⟨𝑀, 1𝑜⟩] ~Q0 Q0 𝑄 Q0) → ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) Q0)
2016, 18, 19syl2anc 391 . . . . . 6 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) Q0)
21 nqpnq0nq 6435 . . . . . 6 ((𝑋 Q ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) Q0) → (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) Q)
226, 20, 21syl2anc 391 . . . . 5 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) Q)
235, 22eqeltrd 2111 . . . 4 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → A Q)
24 addclnq 6359 . . . . 5 ((𝑄 Q 𝑄 Q) → (𝑄 +Q 𝑄) Q)
251, 1, 24syl2anc 391 . . . 4 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (𝑄 +Q 𝑄) Q)
26 nqnq0a 6436 . . . 4 ((A Q (𝑄 +Q 𝑄) Q) → (A +Q (𝑄 +Q 𝑄)) = (A +Q0 (𝑄 +Q 𝑄)))
2723, 25, 26syl2anc 391 . . 3 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (A +Q (𝑄 +Q 𝑄)) = (A +Q0 (𝑄 +Q 𝑄)))
28 simplr 482 . . . . . 6 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄)))
29 2onn 6030 . . . . . . . . . . . . . 14 2𝑜 𝜔
30 2on0 5949 . . . . . . . . . . . . . 14 2𝑜 ≠ ∅
31 elni 6292 . . . . . . . . . . . . . 14 (2𝑜 N ↔ (2𝑜 𝜔 2𝑜 ≠ ∅))
3229, 30, 31mpbir2an 848 . . . . . . . . . . . . 13 2𝑜 N
33 nnppipi 6327 . . . . . . . . . . . . 13 ((𝑀 𝜔 2𝑜 N) → (𝑀 +𝑜 2𝑜) N)
3432, 33mpan2 401 . . . . . . . . . . . 12 (𝑀 𝜔 → (𝑀 +𝑜 2𝑜) N)
35 opelxpi 4319 . . . . . . . . . . . 12 (((𝑀 +𝑜 2𝑜) N 1𝑜 N) → ⟨(𝑀 +𝑜 2𝑜), 1𝑜 (N × N))
3634, 8, 35sylancl 392 . . . . . . . . . . 11 (𝑀 𝜔 → ⟨(𝑀 +𝑜 2𝑜), 1𝑜 (N × N))
37 enqex 6344 . . . . . . . . . . . 12 ~Q V
3837ecelqsi 6096 . . . . . . . . . . 11 (⟨(𝑀 +𝑜 2𝑜), 1𝑜 (N × N) → [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ((N × N) / ~Q ))
3936, 38syl 14 . . . . . . . . . 10 (𝑀 𝜔 → [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ((N × N) / ~Q ))
40 df-nqqs 6332 . . . . . . . . . 10 Q = ((N × N) / ~Q )
4139, 40syl6eleqr 2128 . . . . . . . . 9 (𝑀 𝜔 → [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q Q)
427, 41syl 14 . . . . . . . 8 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q Q)
43 mulclnq 6360 . . . . . . . 8 (([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q Q 𝑄 Q) → ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄) Q)
4442, 1, 43syl2anc 391 . . . . . . 7 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄) Q)
45 nqnq0a 6436 . . . . . . 7 ((𝑋 Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄) Q) → (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄)))
466, 44, 45syl2anc 391 . . . . . 6 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄)))
47 nqnq0m 6437 . . . . . . . . 9 (([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q Q 𝑄 Q) → ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q0 𝑄))
4842, 1, 47syl2anc 391 . . . . . . . 8 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q0 𝑄))
49 nqnq0pi 6420 . . . . . . . . . . 11 (((𝑀 +𝑜 2𝑜) N 1𝑜 N) → [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 = [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q )
5034, 8, 49sylancl 392 . . . . . . . . . 10 (𝑀 𝜔 → [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 = [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q )
517, 50syl 14 . . . . . . . . 9 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 = [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q )
5251oveq1d 5470 . . . . . . . 8 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 ·Q0 𝑄) = ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q0 𝑄))
5348, 52eqtr4d 2072 . . . . . . 7 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄) = ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 ·Q0 𝑄))
5453oveq2d 5471 . . . . . 6 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (𝑋 +Q0 ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄)) = (𝑋 +Q0 ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 ·Q0 𝑄)))
5528, 46, 543eqtrd 2073 . . . . 5 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → B = (𝑋 +Q0 ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 ·Q0 𝑄)))
56 nnanq0 6440 . . . . . . . . . 10 ((𝑀 𝜔 2𝑜 𝜔 1𝑜 N) → [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 = ([⟨𝑀, 1𝑜⟩] ~Q0 +Q0 [⟨2𝑜, 1𝑜⟩] ~Q0 ))
578, 56mp3an3 1220 . . . . . . . . 9 ((𝑀 𝜔 2𝑜 𝜔) → [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 = ([⟨𝑀, 1𝑜⟩] ~Q0 +Q0 [⟨2𝑜, 1𝑜⟩] ~Q0 ))
587, 29, 57sylancl 392 . . . . . . . 8 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → [⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 = ([⟨𝑀, 1𝑜⟩] ~Q0 +Q0 [⟨2𝑜, 1𝑜⟩] ~Q0 ))
5958oveq1d 5470 . . . . . . 7 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 ·Q0 𝑄) = (([⟨𝑀, 1𝑜⟩] ~Q0 +Q0 [⟨2𝑜, 1𝑜⟩] ~Q0 ) ·Q0 𝑄))
60 opelxpi 4319 . . . . . . . . . . . 12 ((2𝑜 𝜔 1𝑜 N) → ⟨2𝑜, 1𝑜 (𝜔 × N))
6129, 8, 60mp2an 402 . . . . . . . . . . 11 ⟨2𝑜, 1𝑜 (𝜔 × N)
6211ecelqsi 6096 . . . . . . . . . . 11 (⟨2𝑜, 1𝑜 (𝜔 × N) → [⟨2𝑜, 1𝑜⟩] ~Q0 ((𝜔 × N) / ~Q0 ))
6361, 62ax-mp 7 . . . . . . . . . 10 [⟨2𝑜, 1𝑜⟩] ~Q0 ((𝜔 × N) / ~Q0 )
6463, 14eleqtrri 2110 . . . . . . . . 9 [⟨2𝑜, 1𝑜⟩] ~Q0 Q0
65 distnq0r 6445 . . . . . . . . 9 ((𝑄 Q0 [⟨𝑀, 1𝑜⟩] ~Q0 Q0 [⟨2𝑜, 1𝑜⟩] ~Q0 Q0) → (([⟨𝑀, 1𝑜⟩] ~Q0 +Q0 [⟨2𝑜, 1𝑜⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝑄)))
6664, 65mp3an3 1220 . . . . . . . 8 ((𝑄 Q0 [⟨𝑀, 1𝑜⟩] ~Q0 Q0) → (([⟨𝑀, 1𝑜⟩] ~Q0 +Q0 [⟨2𝑜, 1𝑜⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝑄)))
6718, 16, 66syl2anc 391 . . . . . . 7 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (([⟨𝑀, 1𝑜⟩] ~Q0 +Q0 [⟨2𝑜, 1𝑜⟩] ~Q0 ) ·Q0 𝑄) = (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝑄)))
6859, 67eqtrd 2069 . . . . . 6 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 ·Q0 𝑄) = (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝑄)))
6968oveq2d 5471 . . . . 5 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (𝑋 +Q0 ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q0 ·Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝑄))))
70 nq02m 6447 . . . . . . . . 9 (𝑄 Q0 → ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝑄) = (𝑄 +Q0 𝑄))
7170oveq2d 5471 . . . . . . . 8 (𝑄 Q0 → (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝑄)) = (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄)))
7271oveq2d 5471 . . . . . . 7 (𝑄 Q0 → (𝑋 +Q0 (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝑄))) = (𝑋 +Q0 (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7318, 72syl 14 . . . . . 6 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (𝑋 +Q0 (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝑄))) = (𝑋 +Q0 (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7417, 6sseldi 2937 . . . . . . 7 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → 𝑋 Q0)
75 addclnq0 6433 . . . . . . . 8 ((𝑄 Q0 𝑄 Q0) → (𝑄 +Q0 𝑄) Q0)
7618, 18, 75syl2anc 391 . . . . . . 7 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (𝑄 +Q0 𝑄) Q0)
77 addassnq0 6444 . . . . . . 7 ((𝑋 Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) Q0 (𝑄 +Q0 𝑄) Q0) → ((𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7874, 20, 76, 77syl3anc 1134 . . . . . 6 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → ((𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)) = (𝑋 +Q0 (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 (𝑄 +Q0 𝑄))))
7973, 78eqtr4d 2072 . . . . 5 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (𝑋 +Q0 (([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄) +Q0 ([⟨2𝑜, 1𝑜⟩] ~Q0 ·Q0 𝑄))) = ((𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
8055, 69, 793eqtrd 2073 . . . 4 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → B = ((𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
81 oveq1 5462 . . . . . 6 (A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) → (A +Q0 (𝑄 +Q0 𝑄)) = ((𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄)))
8281eqeq2d 2048 . . . . 5 (A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) → (B = (A +Q0 (𝑄 +Q0 𝑄)) ↔ B = ((𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄))))
835, 82syl 14 . . . 4 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (B = (A +Q0 (𝑄 +Q0 𝑄)) ↔ B = ((𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) +Q0 (𝑄 +Q0 𝑄))))
8480, 83mpbird 156 . . 3 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → B = (A +Q0 (𝑄 +Q0 𝑄)))
854, 27, 843eqtr4rd 2080 . 2 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → B = (A +Q (𝑄 +Q 𝑄)))
86 simprlr 490 . . 3 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (𝑄 +Q 𝑄) <Q 𝑃)
87 ltrelnq 6349 . . . . . 6 <Q ⊆ (Q × Q)
8887brel 4335 . . . . 5 ((𝑄 +Q 𝑄) <Q 𝑃 → ((𝑄 +Q 𝑄) Q 𝑃 Q))
8986, 88syl 14 . . . 4 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → ((𝑄 +Q 𝑄) Q 𝑃 Q))
90 ltanqg 6384 . . . . 5 (((𝑄 +Q 𝑄) Q 𝑃 Q A Q) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (A +Q (𝑄 +Q 𝑄)) <Q (A +Q 𝑃)))
91903expa 1103 . . . 4 ((((𝑄 +Q 𝑄) Q 𝑃 Q) A Q) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (A +Q (𝑄 +Q 𝑄)) <Q (A +Q 𝑃)))
9289, 23, 91syl2anc 391 . . 3 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → ((𝑄 +Q 𝑄) <Q 𝑃 ↔ (A +Q (𝑄 +Q 𝑄)) <Q (A +Q 𝑃)))
9386, 92mpbid 135 . 2 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → (A +Q (𝑄 +Q 𝑄)) <Q (A +Q 𝑃))
9485, 93eqbrtrd 3775 1 (((A = (𝑋 +Q0 ([⟨𝑀, 1𝑜⟩] ~Q0 ·Q0 𝑄)) B = (𝑋 +Q ([⟨(𝑀 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑄))) ((𝑄 Q (𝑄 +Q 𝑄) <Q 𝑃) (𝑋 Q 𝑀 𝜔))) → B <Q (A +Q 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 97  wb 98   = wceq 1242   wcel 1390  wne 2201  c0 3218  cop 3370   class class class wbr 3755  𝜔com 4256   × cxp 4286  (class class class)co 5455  1𝑜c1o 5933  2𝑜c2o 5934   +𝑜 coa 5937  [cec 6040   / cqs 6041  Ncnpi 6256   ~Q ceq 6263  Qcnq 6264   +Q cplq 6266   ·Q cmq 6267   <Q cltq 6269   ~Q0 ceq0 6270  Q0cnq0 6271   +Q0 cplq0 6273   ·Q0 cmq0 6274
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bnd 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-coll 3863  ax-sep 3866  ax-nul 3874  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220  ax-iinf 4254
This theorem depends on definitions:  df-bi 110  df-dc 742  df-3or 885  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-int 3607  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-tr 3846  df-eprel 4017  df-id 4021  df-iord 4069  df-on 4071  df-suc 4074  df-iom 4257  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852  df-fv 4853  df-ov 5458  df-oprab 5459  df-mpt2 5460  df-1st 5709  df-2nd 5710  df-recs 5861  df-irdg 5897  df-1o 5940  df-2o 5941  df-oadd 5944  df-omul 5945  df-er 6042  df-ec 6044  df-qs 6048  df-ni 6288  df-pli 6289  df-mi 6290  df-lti 6291  df-plpq 6328  df-mpq 6329  df-enq 6331  df-nqqs 6332  df-plqqs 6333  df-mqqs 6334  df-ltnqqs 6337  df-enq0 6406  df-nq0 6407  df-plq0 6409  df-mq0 6410
This theorem is referenced by:  prarloc  6485
  Copyright terms: Public domain W3C validator